Ballistic Research Laboratory
   HOME

TheInfoList



OR:

The Ballistic Research Laboratory (BRL) was a leading U.S. Army research establishment situated at Aberdeen Proving Ground,
Maryland Maryland ( ) is a state in the Mid-Atlantic region of the United States. It shares borders with Virginia, West Virginia, and the District of Columbia to its south and west; Pennsylvania to its north; and Delaware and the Atlantic Ocean t ...
that specialized in ballistics ( interior, exterior, and
terminal Terminal may refer to: Computing Hardware * Terminal (electronics), a device for joining electrical circuits together * Terminal (telecommunication), a device communicating over a line * Computer terminal, a set of primary input and output devi ...
) as well as vulnerability and lethality analysis. BRL served as a major Army center for research and development in technologies related to weapon phenomena, armor, electronic devices, and high-speed computing. In 1992, BRL's mission, personnel, and facilities were incorporated into the newly created Army Research Laboratory (ARL), and BRL was disestablished. BRL is perhaps best known for commissioning the creation of
ENIAC ENIAC (; Electronic Numerical Integrator and Computer) was the first programmable, electronic, general-purpose digital computer, completed in 1945. There were other computers that had these features, but the ENIAC had all of them in one pac ...
, the first electronic general-purpose digital computer.


History


Formation

The history of the Ballistic Research Laboratory dates back to
World War I World War I (28 July 1914 11 November 1918), often abbreviated as WWI, was List of wars and anthropogenic disasters by death toll, one of the deadliest global conflicts in history. Belligerents included much of Europe, the Russian Empire, ...
with the Office of the Chief of Ordnance (OCO) within the U.S. Army. During the first year of U.S. involvement in the war, the OCO was responsible for supervising ballistic firings at Sandy Hook Proving Ground in New Jersey and computing firing tables for the Army. These firing tables played a vital role in the war effort, because
field artillery Field artillery is a category of mobile artillery used to support armies in the field. These weapons are specialized for mobility, tactical proficiency, short range, long range, and extremely long range target engagement. Until the early 20t ...
units heavily relied on them to determine the proper angle of elevation that a specific projectile required to hit a target at a specific range with a given propellant charge. They were also used to predict the projectile's trajectory and correct for variations in atmospheric temperature, air density, wind, and other factors. However, Sandy Hook Proving Ground was closed down in 1917 due to its inadequate size and its close proximity to
New York Harbor New York Harbor is at the mouth of the Hudson River where it empties into New York Bay near the East River tidal estuary, and then into the Atlantic Ocean on the east coast of the United States. It is one of the largest natural harbors in ...
, and operations were moved to the newly established Aberdeen Proving Ground in
Harford County Harford County is located in the U.S. state of Maryland. As of the 2020 census, the population was 260,924. Its county seat is Bel Air. Harford County is included in the Baltimore-Columbia-Towson, MD Metropolitan Statistical Area, which is al ...
. By early 1918, almost all of the OCO's test firings were conducted at Aberdeen Proving Ground. As the war continued, the Chief of Ordnance created a Ballistics Branch for the OCO on April 6, 1918, to keep up with the rapidly increasing demand for firing tables and other ballistic data. The first Head of the Ballistic Branch was Major Forest Moulton, a former astronomy professor at the
University of Chicago The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park neighborhood. The University of Chicago is consistently ranked among the b ...
. During his tenure as the head of the branch, Moulton significantly expanded the Ballistics Branch, greatly advancing the Army's theoretical and experimental ballistics work as well as recruiting a large number of highly educated scientists to the staff. After the end of World War I, the OCO was reorganized into four major parts in 1919 to accommodate for peacetime operations requirements: the General Office, the Manufacturing Service, the Field Service, and the Technical Staff. In 1935, the Research Division was created at Aberdeen Proving Ground and placed under the control of the Technical Staff. Led by Colonel Hermann H. Zornig, the Research Division initially consisted of only thirty people; however, despite the small staff size, the group supervised six different sections of ballistic work: Interior Ballistics, Exterior Ballistics, Ballistics Measurements, Ordnance Engineering, Computing, and War Reserve. The Internal Ballistics Section was responsible for mathematical and experimental research that advanced the theory of interior ballistics and the investigation of gun design principles. It also conducted effect-of-fire investigations, which studied the behavior of projectiles and bombs as well as their individual components as they approached a target. The Exterior Ballistics Section focused on the trajectories and flight characteristics of projectiles and bombs, which influenced the design of new munitions. The Ballistics Measurements Section developed improved ballistic measuring devices, while the Ordnance Engineering Section made kinematic and mechanical analyses of gun mechanisms and gun mounts. The Computing Section was tasked with preparing firing and bombing tables for standard ammunition and bombs, and the War Reserve Section was responsible for the surveillance of stored ammunition. In 1938, the Research Division was renamed the Ballistic Research Laboratory and Colonel Zornig became its first director. This development was made largely in recognition of the Research Division's importance to the U.S. Army, and, in 1939, the Army Air Corps contributed funds to BRL for a new building to house additional laboratory facilities as a show of gratitude for the lab's work on bomb ballistics. As a result of the change, the Interior Ballistics Section was broken down into Mathematical (transferred to the Exterior Ballistics Section), Mechanics and Heat, Physical Chemistry, and Effect of Fire Units, while the Computing Section was divided into Ground Gunfire, Bombing, and Air Gunfire Units.


World War II

The Ballistics Research Laboratory further expanded its capabilities and quickly rose to prominence during the timespan of
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
. Compared to its initial staff of 65 people with a $120,000 annual budget in 1940, BRL grew to have over 700 personnel with an annual budget of $1.6 million by 1945. It was responsible for conducting basic and technical research in ballistics and other related scientific fields as well as overseeing the development of computing techniques, the preparation of ballistic tables for guns, bombs, and rockets, and the provision of information regarding the use of various weapons during combat. Unlike civilian laboratories whose productions were inherently restricted by anticipations of market demand, BRL owned a significant portion of its success to how the development of their instruments and technologies reflected only what the Army needed. Enough flexibility was provided to the lab so that it could improvise solutions to particular problems and later refine those improvisations for wider use. In 1940, Zornig established a Scientific Advisory Council, with which he appointed eminent American scientists and engineers to undertake various assignments for BRL. The original members of the committee consisted of aerodynamicist
Hugh Dryden Hugh Latimer Dryden (July 2, 1898 – December 2, 1965) was an American aeronautical scientist and civil servant. He served as NASA Deputy Administrator from August 19, 1958, until his death. Biography Early life and education Dryden was born in ...
, physicist
Albert Hull Albert Wallace Hull (19 April 1880 – 22 January 1966) was an American physicist and electrical engineer who made contributions to the development of vacuum tubes, and invented the magnetron. He was a member of the National Academy of Sci ...
, physical chemist Bernard Lewis, astronomer Henry Russell, physicist Isidor Rabi, physical chemist
Harold Urey Harold Clayton Urey ( ; April 29, 1893 – January 5, 1981) was an American physical chemist whose pioneering work on isotopes earned him the Nobel Prize in Chemistry in 1934 for the discovery of deuterium. He played a significant role in th ...
, aerospace engineer
Theodore von Karman Theodore may refer to: Places * Theodore, Alabama, United States * Theodore, Australian Capital Territory * Theodore, Queensland, a town in the Shire of Banana, Australia * Theodore, Saskatchewan, Canada * Theodore Reservoir, a lake in Saskatche ...
, and mathematician
John von Neumann John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest c ...
. For the majority of the war, a substantial amount of the BRL effort was directed toward testing weapons and computing firing and bombing tables. However, the lab was also involved in significantly improving the quality control of stockpiled ammunition as well as training and deploying technical service teams to calibrate guns on the battlefield. In addition, BRL provided technical analysis assistance to the U.S. Army and Army Air Forces, such as determining the optimum bomb pattern for bombing runs, improving the accuracy of aerial gunnery, and conducting studies on the vulnerability of the German 88-mm gun to fragmenting shells. In August 1943, Ordnance Department Order 80 designated the BRL as the principal research organization of the U.S. Army's Ordnance Department. One of the major events that took place at BRL during the war was the installation of the first
supersonic wind tunnel A supersonic wind tunnel is a wind tunnel that produces supersonic speeds (1.2< M<5) The Mach number and flow are determined by the
in the United States. The recommendation to construct a wind tunnel at Aberdeen Proving Ground was made in 1940 by Theodore von Karman, a member of the Scientific Advisory Committee. Karman proposed that a wind tunnel would greatly enhance ballistic research since it could produce both subsonic and supersonic velocities. Soon afterwards, the Guggenheim Aeronautical Laboratory of the
California Institute of Technology The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
was commissioned with designing a wind tunnel that could produce velocities up to Mach 4.3. However, the wind tunnel was not constructed until the fall of 1943 and was not ready for use until November 1944. Upon its completion,
Edwin Hubble Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology. Hubble proved that many objects previousl ...
, the Chief of the External Ballistics Branch, was arranged as the first head of the Supersonic Wind Tunnel with BRL Assistant Director Robert Kent assigned as the second head. The wind tunnel was primarily used to obtain basic design information for the development and modification of bombs, rockets, and other fin-stabilized projectiles. Near the end of World War II, BRL also conducted a series of experiments assessing the vulnerability and survivability of U.S. Army aircraft.


Development of electronic computers

During the interwar period between the First and Second World War, the need for a faster and more efficient method of constructing artillery firing tables prompted BRL to consider the potential applications of digital computation. In 1935, before the Research Division became BRL, the Technical Staff acquired a copy of the Bush differential analyzer, which could compute a 60-second trajectory in about 15 minutes compared to about 20 hours performed by a person with a desk calculator. However, even the differential analyzer was not enough to keep up with the needs of the U.S. Army. By 1941, the production of firing tables was so far behind that BRL rushed to find any means of expediting the ballistic computation process. To ease the burden of work, the lab trained almost 100 female graduates from colleges all over the Northeast to calculate ballistic firing tables. When the
Women's Army Corps The Women's Army Corps (WAC) was the women's branch of the United States Army. It was created as an auxiliary unit, the Women's Army Auxiliary Corps (WAAC) on 15 May 1942 and converted to an active duty status in the Army of the United States ...
was formed, those assigned to ballistic computation were trained in
Philadelphia Philadelphia, often called Philly, is the largest city in the Commonwealth of Pennsylvania, the sixth-largest city in the U.S., the second-largest city in both the Northeast megalopolis and Mid-Atlantic regions after New York City. Since ...
and deployed to Aberdeen Proving Ground. During this time, Colonel Paul Gillon of the OCO had his attention on the Moore School of Electrical Engineering at the
University of Pennsylvania The University of Pennsylvania (also known as Penn or UPenn) is a Private university, private research university in Philadelphia. It is the fourth-oldest institution of higher education in the United States and is ranked among the highest- ...
. Gillon, who oversaw the ballistic computations needed for the firing and bombing tables, knew that an upgraded version of the Bush differential analyzer existed at the Moore School. In 1942, John Mauchly and John Presper Eckert at the Moore School submitted a proposal to the Ballistic Research Laboratory that detailed the creation of a high-speed computation device for computing ballistic trajectories. On June 5, 1943, the Army Ordnance Corps and the University of Pennsylvania signed a six-month contract in the amount of $61,700 () for the construction of the Electronic Numerical Integrator and Computer, or ENIAC. Known as “Project PX,” the secret construction of the pilot model took place at the Moore School with Eckert as chief engineer and Mauchly as principal consultant. However, building the ENIAC proved to be more arduous than expected. By 1944, only two of the four accumulators were completed. At this point, BRL had only fallen further behind the demand for firing tables. While the number of table requests reached forty a week, BRL could only produce about fifteen. But despite the slow progress, the finished accumulators performed twice as fast as the initial stipulated speed, operating at 200,000 pulses a second. Impressed by this demonstration, BRL agreed to increase the number of accumulators in the ENIAC from four to twenty, delaying its completion even further but obtaining a much more powerful machine in exchange. As a result, the ENIAC wasn't finished until November 1945, three months after the end of the war. Throughout the course of ENIAC's construction, nine additional supplements were made to the initial contract, increasing the Project PX's overall cost to $486,800 (). While ENIAC never saw use during World War II, its first job upon completion was to calculate the feasibility of a proposed design for the
hydrogen bomb A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
. But while ENIAC could perform ballistic calculations at impressive speeds, it was held back by its lack of internally stored program capability. It took scientists a month to complete the calculation due to the thousands of steps involved as well as ENIAC's inability to store programs or remember more than twenty ten-digit numbers. Nevertheless, the electronic computer revealed several flaws in the proposed design of the bomb that would have been nearly impossible to identify otherwise. The formal dedication of the ENIAC took place on February 15, 1946, at the Moore School, and the machine was moved to its permanent home at Aberdeen Proving Ground in January 1947. During a formal demonstration of the ENIAC in 1946, the Army showed the machine could solve 5,000 addition problems in one second as well as 50 multiplication problems in one second. While the Bush differential analyzer could compute a 60-second trajectory in about 15 minutes, the ENIAC could do the same in about 30 seconds. In 1948, BRL converted ENIAC into an internally stored-fixed program computer and used it to perform calculations on not just ballistics but also for weather prediction,
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
studies, thermal ignition, and other scientific tasks. In addition, it was also made available to universities free of charge. But even before ENIAC was operational, BRL had already started to plan for the development of a stored-program computer known as the Electronic Discrete Variable Computer, or EDVAC. In 1944, in the middle of ENIAC's development, Mauchley and Eckert proposed the creation of EDVAC to make up for ENIAC's shortcomings. Unlike its predecessor, the EDVAC was planned to have a central processor and a memory for both data and programs. During this time, John von Neumann became involved in the work on both ENIAC and EDVAC and was among those who supported funding the EDVAC project. In October 1944, the Ordnance Department issued a contract and $105,600 () in funding for the development of this new machine with supervision of the project assigned to BRL. Built as a collaborative effort between BRL, the Moore School, the Institute for Advanced Studies, and the National Bureau of Standards, EDVAC was completed and installed at BRL in 1949. However, it wasn't operational until 1952 due to design issues. By then, BRL had already acquired the Ordnance Discrete Variable Automatic Computer (ORDVAC), which the lab had commissioned the University of Illinois to build. As a result, BRL was the world's largest computer center for a brief time in 1952 with ENIAC, EDVAC, and ORVAC all in its possession.


Post-World War II

After World War II, the six branches at BRL were raised to laboratory status in August 1945, leading to the formation of the Interior Ballistics Laboratory, the Exterior Ballistics Laboratory, the Terminal Ballistics Laboratory, the Ordnance Engineering Laboratory, the Ballistic Measurements Laboratory, and the Computing Laboratory. These six labs were collectively referred to as the Ballistic Research Laboratories. In 1953, BRL replaced the Ordnance Engineering Laboratory with another laboratory called the Weapons Systems Laboratory to increase research in weapon effectiveness and vulnerability assessment. The post-war era also saw BRL administer more of its research through private contractors and other government agencies. About 25 percent of the total appropriation for research from 1953 to 1956 was channeled in this way. In 1958, BRL established the Future Weapons System Agency to provide an unbiased source of advice on new weapon development programs to the Ordnance Corps. Throughout the 1960s and 1970s, BRL increased its focus on target acquisition, guidance, and control technology and expanded its research to include more sophisticated weapon systems. At the same time, the lab discontinued research for which the technology had sufficiently matured and transferred much of its routine or service operations to other agencies. This transition included the transfer of its Pulse Radiation Facility to the Army Test and Evaluation Command, the transfer of the Tandem Van de Graaff Accelerator to the University of Pennsylvania, and the closure of the BRL wind tunnels. In 1962, as part of the Army's major reorganization effort, BRL was placed under the new U.S. Army Materiel Command (AMC) alongside other groups such as the Harry Diamond Laboratory and the Human Engineering Laboratories. But unlike the other organizations at Aberdeen Proving Ground, BRL was classified as a Class II Activity, which made it separate from the administration of the Aberdeen Proving Ground Command and allowed BRL to receive funds directly from AMC. As Army leaders continued to streamline the research labs in an effort to eliminate overlapping functions, the Ballistic Research Laboratories underwent several organizational changes. In 1968, BRL's Ballistic Measurements Laboratory became the Signature and Propagation Laboratory, which remained under BRL. In 1969, the Ballistic Research Laboratories added yet another laboratory called the Nuclear Defense Laboratory, which was renamed as the Nuclear Effects Laboratory upon consolidation. In the early 1970s, BRL replaced its Signature and Propagation Laboratory with the newly formed Concepts Analysis Laboratory and replaced its Nuclear Effects Laboratory with the Radiation Laboratory. Finally, in 1976, the Ballistic Research Laboratories merged all of the existing laboratories under its command and to become the new Ballistic Research Laboratory once more. As a result, the seven laboratories were turned into six new divisions: the Interior Ballistics Division, the Launch and Flight Division, the Terminal Ballistics Division, the Ballistic Modeling Division, the Vulnerability Analysis Division, and the Computer Support Division. In 1992, the Ballistic Research Laboratory was one of the seven Army laboratories that was consolidated to form the U.S. Army Research Laboratory. Its operations were divided into three parts, each of which merged into different ARL directorates. The bulk of BRL formed the core of the Weapons Technology Directorate, which later became the Weapons and Materials Research Directorate. BRL's computer technology elements migrated to the Advanced Computational and Information Sciences Directorate, which later became the Computational and Information Sciences Directorate. Lastly, BRL's vulnerability analysis component became a part of ARL's Survivability/Lethality Analysis Directorate.


Advisors and consultants

From 1940 to 1977, the Scientific Advisory Committee helped advise the Director of BRL on the scientific and technical aspects of ballistic weapons. The committee was first established by BRL director Col. Hermann Zornig with the aid of American mathematician
Oswald Veblen Oswald Veblen (June 24, 1880 – August 10, 1960) was an American mathematician, geometer and topologist, whose work found application in atomic physics and the theory of relativity. He proved the Jordan curve theorem in 1905; while this wa ...
, the chief scientist of BRL. Composed of highly acclaimed scientists and engineers, the committee influenced many of BRL's decisions regarding new facilities, kept the lab informed about the latest advancements in various scientific fields, and provided insight into the causes of common problems. Members of the Scientific Advisory Committee were also generally available for individual consultation on specific matters. : Over time, several prominent figures joined the Scientific Advisory Committee. These members included cosmic ray physicist Thomas H. Johnson, mathematician Edward J. McShane, physicist David L. Webster, and aeronautical scientist Clark Millikan. The Scientific Advisory Committee was later disbanded in 1969 but re-established again by BRL director Robert Eichelberger in 1973. However, the committee was permanently abolished in April 1977 as a result of efforts by
President Jimmy Carter James Earl Carter Jr. (born October 1, 1924) is an American politician who served as the 39th president of the United States from 1977 to 1981. A member of the Democratic Party, he previously served as the 76th governor of Georgia from 1 ...
’s administration to decrease the number of committees used by federal agencies. Members of the last committee were chemist Joseph E. Mayer, aerospace engineer Homer J. Stewart, Army Maj. General Leslie Earl Simon, Army Lt. General Austin Betts, explosives expert J. V. Kaufman, Deputy Assistant Secretary of the Army Charles Poor, computer scientist Morris Rubinoff, physicist Martin Summerfield, and aeronautical engineer Herbert K. Weiss. Other consultants for BRL included astronomer Dorrit Hoffleit; chemists John Gamble Kirkwood (recipient of the Langmuir Award),
George Kistiakowsky George may refer to: People * George (given name) * George (surname) * George (singer), American-Canadian singer George Nozuka, known by the mononym George * George Washington, First President of the United States * George W. Bush, 43rd President ...
(recipient of the Medal for Merit, Medal of Freedom, National Medal of Science, and the
Priestley Medal The Priestley Medal is the highest honor conferred by the American Chemical Society (ACS) and is awarded for distinguished service in the field of chemistry. Established in 1922, the award is named after Joseph Priestley, the discoverer of oxygen ...
), and Franklin Long; computer scientist
Herman Goldstine Herman Heine Goldstine (September 13, 1913 – June 16, 2004) was a mathematician and computer scientist, who worked as the director of the IAS machine at Princeton University's Institute for Advanced Study and helped to develop ENIAC, th ...
(recipient of the National Medal of Science); mathematicians George Carrier (recipient of the National Medal of Science) and
Richard Courant Richard Courant (January 8, 1888 – January 27, 1972) was a German American mathematician. He is best known by the general public for the book '' What is Mathematics?'', co-written with Herbert Robbins. His research focused on the areas of r ...
;
mechanical engineer Mechanical may refer to: Machine * Machine (mechanical), a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement * Mechanical calculator, a device used to perform the basic operations of ...
Howard Wilson Emmons; and physicists
Walker Bleakney Walker Bleakney (February 8, 1901 – January 15, 1992) was an American physicist, one of inventors of mass spectrometers, and widely noted for his research in the fields of atomic physics, molecular physics, fluid dynamics, the ionization of ga ...
(a pioneer of
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
), Joseph O. Hirschfelder (recipient of the National Medal of Science), Norman Ramsey (Nobel laureate),
Robert G. Sachs Robert G. Sachs (May 4, 1916 – April 14, 1999) was an American theoretical physicist, a founder and a director of the Argonne National Laboratory. Sachs was also notable for his work in theoretical nuclear physics, terminal ballistics, and nu ...
(founder and director of
Argonne National Laboratory Argonne National Laboratory is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the l ...
), and L.H. Thomas (the first fellow in IBM's Watson Research Center).


Research

The Ballistic Research Laboratory acted as a principal research establishment for the U.S. Army to conduct research that contributed to weapon design and use. However, the scope of their work was not just limited to munitions as BRL research spanned a wide range of physical and mathematical sciences in order to enhance different facets of the Army's complex weapon systems. The laboratory also conducted research in atmospheric sciences, which was eventually transferred to the Atmospheric Sciences Laboratory in 1976.


Computers

As high-speed computation became a major Army priority, BRL played a major role in the development of the modern computer as the lab worked to increase the pace of military calculations. In addition to aiding the development of some of the world's earliest electronic computers, BRL focused on making advancements in both hardware and software with an emphasis on augmenting the speed of operation, ease of programming, and overall economy of their computers. After the successful demonstration of its early electronic computers, BRL continued to invest heavily in high speed computation research. In 1956, researchers at BRL began developing a new computer on their own called the Ballistic Research Laboratories Electronic Scientific Computer, or
BRLESC The BRLESC I (Ballistic Research Laboratories Electronic Scientific Computer) was one of the last of the first-generation electronic computers. It was built by the United States Army's Ballistic Research Laboratory (BRL) at Aberdeen Proving Gro ...
. Completed in 1961, it was very briefly considered the world's fastest computer before it was quickly outperformed by the
IBM 7030 Stretch The IBM 7030, also known as Stretch, was IBM's first transistorized supercomputer. It was the fastest computer in the world from 1961 until the first CDC 6600 became operational in 1964."Designed by Seymour Cray, the CDC 6600 was almost three t ...
. In 1967, BRL developed a solid-state digital computer called the BRLESC II, which was designed to run 200 times faster than the ORDVAC. BRLESC I and II became the last computers designed and developed by BRL. After performing around-the-clock operations for more than a decade, both the BRLESC I and II were shut down in 1978. Despite this, BRL continued to conduct research on high-speed computing and was involved in the development of new hardware and software such as the
Heterogeneous Element Processor The Heterogeneous Element Processor (HEP) was introduced by Denelcor, Inc. in 1982. The HEP's architect was Burton Smith. The machine was designed to solve fluid dynamics problems for the Ballistic Research Laboratory. A HEP system, as the nam ...
and ping.


Interior ballistics

Interior ballistics Internal ballistics (also interior ballistics), a subfield of ballistics, is the study of the propulsion of a projectile. In guns, internal ballistics covers the time from the propellant's ignition until the projectile exits the gun barrel. The ...
research at BRL focused primarily on improving the propulsion of munitions and increasing the speed of Army missiles. In working toward this goal, BRL developed new propellants that provided more power and energy while maintaining stability and control. Such work entailed analyzing the chemistry of flames, the mechanics of the launching process, and the propellants’ physical and chemical properties. More specific objectives that the researchers word toward included increased muzzle velocity, better burning of propellants, the elimination of hang fires, the reduction of bore erosion, the reduction of
muzzle flash Muzzle flash is the light — both visible and infrared — created by a muzzle blast, which is caused by the sudden release and expansion of high-temperature, high-pressure gases from the muzzle of a firearm during shooting. Both the bla ...
and smoke, decreased gun weight, and better recoil mechanisms. Early in its history, BRL's two principal objectives were to learn more about the fundamental processes of interior ballistics to design better guns and to develop more accurate methods of predicting how those guns would perform. This meant that many of the studies that the lab conducted concentrated on issues surrounding how the propellant interacted with the munition. BRL researchers also focused heavily on the physical chemistry of the propellants as well as the thermodynamic qualities of the powder gases produced from burning the propellant. BRL research in interior ballistics led to a wider range of propellants for different weapon systems that achieved higher velocities. As artillery technology became more sophisticated, BRL used its electronic computers to develop digital programs that simulated the interior ballistic performance of its weapon systems. Interior ballistic data from gun firings also helped BRL researchers create models to guide the design of future munitions. By the mid-20th century, the lab had started developing propellants for advanced rockets and large caliber ammunition. Researchers were also engaged in studies pertaining to ignition, combustion, weapon kinematics, and gun barrel erosion.


Exterior ballistics

Exterior ballistics research at BRL focused on the outward design of Army missiles and the aerodynamic phenomena that influence their flight. In addition to known forces such as drag and lift, BRL researchers were tasked with analyzing potential factors that could influence a projectile's behavior such as the effects of the Magnus force and moment. Both theoretical and experimental studies helped BRL researchers create new techniques for designing aerodynamically stable missiles. One of the most important tasks that BRL performed was developing techniques for predicting the dynamic stability of proposed spin-stabilized missile designs. However, researchers also analyzed designs for fin-stabilized projectiles as well. Other areas of research included analysis on boundary layers, heating rates, and the chemical interactions between the travelling projectile and the surrounding air and electric fields. BRL's exterior ballistics division was not solely responsible for developing better projectiles and firing techniques. This section of the lab was also in charge of preparing the firing and bombing tables for soldiers in the field. During World War II, weapon accuracy became a critical focal point for BRL researchers, who directed much of their wartime effort toward refining the ballistic performance of the projectiles. In order to test the performance of different projectiles under various conditions, the lab relied heavily on the supersonic wind tunnels and aerodynamic ranges installed at Aberdeen Proving Ground. The wind tunnels were used extensively during the late 1950s for BRL's cross-wind program, which arose from the Army's need to obtain aerodynamic data in order to prepare firing tables for aircraft rounds fired at large initial yaw angles. During the
Space Race The Space Race was a 20th-century competition between two Cold War rivals, the United States and the Soviet Union, to achieve superior spaceflight capability. It had its origins in the ballistic missile-based nuclear arms race between the t ...
, BRL assisted in the development of several spacecraft, including the Mercury, Gemini, and
Apollo Apollo, grc, Ἀπόλλωνος, Apóllōnos, label=genitive , ; , grc-dor, Ἀπέλλων, Apéllōn, ; grc, Ἀπείλων, Apeílōn, label=Arcadocypriot Greek, ; grc-aeo, Ἄπλουν, Áploun, la, Apollō, la, Apollinis, label= ...
Projects. The lab also engaged in research regarding high altitude atmospheric physics research, fluid physics, and experimental aeroballistics as well as the development of
intercontinental ballistic missile An intercontinental ballistic missile (ICBM) is a ballistic missile with a range greater than , primarily designed for nuclear weapons delivery (delivering one or more thermonuclear warheads). Conventional, chemical, and biological weapo ...
s.


Terminal ballistics

Terminal ballistics research at BRL studied the underlying effects of weapons upon striking their target. BRL researchers in this field conducted experimental and theoretical work on the impact behavior of projectiles and investigated topics such as the mechanisms of penetration, fragmentation, wound ballistics, detonation, shockwave propagation, and combustion. During the post-World War II era in particular, BRL intensified its terminal ballistics research in response to the Army's need for more destructive weapon systems with greater firepower and the rapid advancement of instruments that could provide more precise data about a weapon's terminal effectiveness. This division of the lab also focused on investigating
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies t ...
and participated in nuclear blast field tests. BRL developed and provided all instrumentation for measuring air blasts, shock velocities, and hydrostatic pressures for Operation Buster-Jangle and
Operation Tumbler-Snapper Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Man ...
in 1952, Operation Upshot-Knothole in 1953, Operation Castle in 1954, and
Operation Teapot Operation Teapot was a series of 14 nuclear test explosions conducted at the Nevada Test Site in the first half of 1955. It was preceded by '' Operation Castle'', and followed by '' Operation Wigwam''. ''Wigwam'' was, administratively, a part ...
in 1955. The laboratory also conducted air blast research during Operation Blowdown in 1963 and
Operation Distant Plain Operation Distant Plain was a series of non-nuclear explosive and detonable gas tests performed on test sites in Alberta, Canada, during the course of 1966 and 1967. Their purpose was to provide airblast, cratering, and ground shock data in summ ...
in 1966 and 1967. In addition, a large portion of the basic research was directed toward the development of predictive mathematical models and computer programs. While terminal ballistics played a large role in weapon design and evaluation, BRL used the experimental data to develop protective technologies as well, including various kinds of tank armor. The lab also conducted research into the effects of laser beams starting in the 1960s.


Vulnerability analysis

Around the end of World War II, BRL was assigned by the Office of the Chief of Ordnance to conduct vulnerability analysis of combat aircraft and munitions and to implement plans to reduce those vulnerabilities. Over time, BRL expanded this role to evaluate all types of weapon systems and vehicles and applied their findings to improve future designs. The laboratory not only conducted
vulnerability analysis Vulnerability refers to "the quality or state of being exposed to the possibility of being attacked or harmed, either physically or emotionally." A window of vulnerability (WOV) is a time frame within which defensive measures are diminished, com ...
on American weapon systems to enhance their performance, but it also analyzed enemy combat systems to pinpoint their weaknesses. While this was a relatively small duty compared to some of its other functions, vulnerability analysis and reduction nevertheless became the central focus for an entire division within BRL as researchers conducted studies concerning methods to increase the effectiveness of Army technology. Throughout the
Vietnam War The Vietnam War (also known by #Names, other names) was a conflict in Vietnam, Laos, and Cambodia from 1 November 1955 to the fall of Saigon on 30 April 1975. It was the second of the Indochina Wars and was officially fought between North Vie ...
, BRL researchers were tasked with continually analyzing combat damage to U.S. aircraft. The laboratory also tested nuclear weapons effects on aerial vehicles and missiles by using high explosive charges to simulate the blast from a nuclear weapon. In general, BRL functioned as the Army's lead laboratory in vulnerability analysis in regards to combat and other external damage, whereas the Army's Vulnerability Assessment Laboratory conducted vulnerability analysis in regards to electronic warfare susceptibility.


Weapon systems

Weapon systems research at BRL generally referred to the study of various munitions from an operational analysis viewpoint. These studies focused on enhancing the effectiveness of various weapons such as guns and rockets against a wide variety of targets from personnel to armed tanks. This research was primarily done to assess and predict how each weapon system would perform in a given situation. Beginning in the early 1950s, BRL relied on operations research techniques to evaluate both the weapon systems and the experimental approach with which they were evaluated. The lab also incorporated concepts from game theory to develop programs that simulated battles that allowed them to analyze different tactics and the use of particular weapons in certain situations. Data collected from these studies, largely with the assistance of BRL's electronic computers, helped guide weapon development for the Army as BRL researchers formulated which weapon system performed best against specific targets under various circumstances. After 1968, the focus of weapon systems research shifted to developing new technical approaches to solving Army problems. BRL researchers also planned for the possibility of total nuclear war and thus focused heavily on evaluating intercontinental ballistic missiles, air defense platforms, and advanced submarine systems. BRL also conducted numerous studies that took factors such as cost-effectiveness and ammunition availability into consideration.


Model 91/38

On March 27, 1964, the U.S. Army's Ballistic Research Laboratory, according to the 36th U.S. President's Commission (commonly known as the
Warren Commission The President's Commission on the Assassination of President Kennedy, known unofficially as the Warren Commission, was established by President Lyndon B. Johnson through on November 29, 1963, to investigate the assassination of United States P ...
), played host to one of the most famous rifles in U.S. history. On that date, three expert marksmen test-fired a Mannlicher–Carcano Type 38, the rifle used by
Lee Harvey Oswald Lee Harvey Oswald (October 18, 1939 – November 24, 1963) was a U.S. Marine veteran who assassinated John F. Kennedy, the 35th president of the United States, on November 22, 1963. Oswald was placed in juvenile detention at the age of 12 fo ...
to assassinate President John F. Kennedy on November 22, 1963. Only one of the three was able to fire three shots somewhat close to the established official time limit attributed to Oswald. But unlike Oswald from the 6th floor of the
Texas School Book Depository The Texas School Book Depository, now known as the Dallas County Administration Building, is a seven-floor building facing Dealey Plaza in Dallas, Texas. The building was Lee Harvey Oswald's vantage point during the assassination of United Sta ...
Building, these marksmen were allowed to use a gun rest and to take as much time as they needed to line up their first shot at a stationary target. Oswald shot at a moving target. Although later research has shown that Oswald had much more time than originally thought, as computed by counting the frames of the original Zapruder Film as opposed to the time line originally published in LIFE Magazine and used in the Warren Commission Report, which had the numbers confused, thus giving a much shorter time of engagement. After accounting for that error, it was found that it was easy to duplicate the attack by Oswald. Later research showed that Oswald was left-handed and used a different technique to shoot rapidly. He rested the fore-stock of the rifle on a box stacked in front of the window and held the rifle with his left hand and sighted through the scope with his left eye as is normal for Left Side Dominant People. He then worked the bolt with his right hand without releasing his grip, or trigger hold. Later, this would allow experts, including an Army Security Agency Special Operations Detachment Designated Marksman, to duplicate that supposed attack, including shooting at a moving target, and to easily beat the supposed time line published by LIFE Magazine.


Projects

The Ballistic Research Laboratory participated in the development of many original technologies and techniques as part of its Army mission. Examples include the following: *
ENIAC ENIAC (; Electronic Numerical Integrator and Computer) was the first programmable, electronic, general-purpose digital computer, completed in 1945. There were other computers that had these features, but the ENIAC had all of them in one pac ...
: The first electronic general-purpose digital computer; it was designed primarily to calculate artillery firing and bombing tables for the U.S. Army. * EDVAC: An early electronic store-program computer that was the first to implement binary coded decimal. *ORVAC: The first electronic computer to have a
compiler In computing, a compiler is a computer program that translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs tha ...
; it used a programming language created by BRL researchers called FORAST. *
BRLESC The BRLESC I (Ballistic Research Laboratories Electronic Scientific Computer) was one of the last of the first-generation electronic computers. It was built by the United States Army's Ballistic Research Laboratory (BRL) at Aberdeen Proving Gro ...
: An early electronic computer that used a hexadecimal notation system. *Ballistic camera: A night-time camera system first devised by BRL in 1941 to locate and record the flashing lights of an approaching aircraft and the signal indicating its release of a bomb; it was used during experimental range bombing tests to calculate bombing tables. *Piezoelectric gauge: A device used to measure changes in acceleration, strain, pressure, and force by taking advantage of the piezoelectric effect. BRL scientists developed a unique variant of the piezoelectric gauge for blast-measurement work. * MIL-STD-105: A U.S. military standard based on a sampling technique to determine the acceptability of ammunition quality during production. *Doppler Velocity and Position (DOVAP) instrumentation system: An early electronic missile-tracking system that tracked the trajectory of a guided missile throughout its flight by noting its velocity and position at all times. *Intercept Ground Optical Recording (IGOR) system: An optical recording instrument that used telescopes and high-speed cameras to measure the relative trajectories of ground-to-air missiles. *BRL microwave interferometer: A modified version of a microwave interferometer that determined the travel time of a projectile's passage through a gun's bore. *BRL microwave spectrometer: An instrument that measures the microwave wavelengths emitted by a sample to obtain information about the structure and chemical bonding of its molecular components. *Kerr cell camera: A high-speed camera system used to photograph the detonation of high explosives. *DOPLOC: A radio reflection Doppler tracking system used to track satellites that do not emit radio-frequency signals, or “dark satellites.” From 1957 to 1961, it obtained launch and orbital information on numerous satellites and space probes, including Explorer, Tiros, Transit, Lunik, and Pioneer. *Small Missile Telecamera (SMT): A camera system originally designed to accurately determine the trajectory of small, high-speed missiles; BRL further modified it to obtain some of the earliest exposures of SPUTNIK II. *Space Probe Optical Recording Telescope (SPORT): A tracking telescope designed specifically for studying the effects of the atmosphere upon the transmission of light. Developed by BRL, it was used to support
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
during Project Echo. *Laser speckle interferometry: An imaging technique developed by BRL to obtain information on target signatures through the statistical processing of laser-scattering patterns. *Shell pusher: A device designed by BRL to push projectiles through large caliber gun tubes with a force of up to 250,000 lbs. * M829: An armor-piercing tank round developed by BRL for the
M1 Abrams The M1 Abrams is a third-generation American main battle tank designed by Chrysler Defense (now General Dynamics Land Systems) and named for General Creighton Abrams. Conceived for modern armored ground warfare and now one of the heaviest t ...
tank. *Computer Man: A special anatomical computer model of the human body used for wound ballistics research. It featured cross-sectional slices of the human body that were coded according to type of tissue, location, and damage susceptibility. *Geometric Information for Targets (GIFT) computer model: A Fortran computer program that provided an illustration of the target and its component from any view along with calculations of its aerodynamic properties. It was mainly used for vulnerability analysis. *AVVAM-1: A computer model developed by BRL that assessed the vulnerability of armored vehicles. * MGM-51 Shillelagh: An anti-tank guided missile intended to serve as ammunition for the MBT-70 tank. BRL worked with other Army organizations to develop the launcher for this projectile. * Sense and Destroy ARMor (SADARM): a “smart” fire-and-forget submunition designed to search and destroy tanks when deployed. BRL aided in its development through its research in millimeter wave phenomena and armor penetration research. *M900: A 105 mm artillery round used by the Army's M1 tanks during Operation Desert Shield/Storm. BRL identified the propellant compatible with the M900 just as its development was about to be canceled prematurely. * M712 Copperhead: A 155 mm cannon-launched guided projectile intended to disable heavily armored targets. BRL devised firing table data and graphical fire-control devices during its development to increase its accuracy. * BRL-CAD: A solid-modeling computer-aided design (CAD) system initially developed by BRL for vulnerability analysis and weapons modeling. It is the oldest known public version-controlled codebase in the world. * Ping: An administration network troubleshooting tool used to test the reachability of a host on a network by sending out signals and measuring how fast it responds. * 75mm gun M2–M6: The standard gun system mounted on American tanks and bomber aircraft. For the M3 variant, BRL modified the design by increasing the length of the tube and improving the metallurgy. *
M2 Browning machine gun The M2 machine gun or Browning .50 caliber machine gun (informally, "Ma Deuce") is a heavy machine gun that was designed towards the end of World War I by John Browning. Its design is similar to Browning's earlier M1919 Browning machine gun, ...
: A heavy 0.50 caliber machine gun. BRL conducted the first complete kinematic analysis of the M2 Browning, from which a method to determine the forces transmitted to the back plate were developed. *
Hispano-Suiza HS.820 The HS.820 was a 20 mm caliber autocannon developed by Hispano-Suiza primarily for aircraft use, but more widely used in a series of ground-based anti-aircraft guns. After Oerlikon purchased Hispano's armaments division in 1970, the HS.820 became ...
: A 20 mm automatic aircraft gun. During World War II, BRL conducted troubleshooting operations for the original model and designed a lightweight variant for turret mounting. *
Shaped charge A shaped charge is an explosive charge shaped to form an explosively formed penetrator (EFP) to focus the effect of the explosive's energy. Different types of shaped charges are used for various purposes such as cutting and forming metal, ini ...
: An explosive charge employed in artillery shells as
high-explosive anti-tank High-explosive anti-tank (HEAT) is the effect of a shaped charge explosive that uses the Munroe effect to penetrate heavy armor. The warhead functions by having an explosive charge collapse a metal liner inside the warhead into a high-velocity ...
(HEAT) rounds and in fin-stabilized rocket-type projectiles. BRL conducted investigations to increase its effectiveness through metallurgy and other methods. *M24A1 gun: a 20-mm aircraft gun. BRL developed a soft-recoil system for the M24A1 to reduce the recoil forces, which led to the development of soft recoil systems for the T121 30-mm gun for the
B-47 The Boeing B-47 Stratojet (Boeing company designation Model 450) is a retired American long-range, six-engined, turbojet-powered strategic bomber designed to fly at high subsonic speed and at high altitude to avoid enemy interceptor aircraft. ...
and B-52 aircraft. *
Convair B-36 Peacemaker The Convair B-36 "Peacemaker" is a strategic bomber that was built by Convair and operated by the United States Air Force (USAF) from 1949 to 1959. The B-36 is the largest mass-produced piston-engined aircraft ever built. It had the longest w ...
: A strategic bomber aircraft used by the U.S. Air Force. After investigating the misfires with the mounted M24 turret guns, BRL developed a modified firing circuit for the aircraft. *
M16 rifle The M16 rifle (officially designated Rifle, Caliber 5.56 mm, M16) is a family of military rifles adapted from the ArmaLite AR-15 rifle for the United States military. The original M16 rifle was a 5.56×45mm automatic rifle with a 20-r ...
: A type of military rifle. BRL developed a kinematic model of the M16AI rifle that accurately simulated the firearm's performance and helped improve its design. *
M549 The M549 is a High-Explosive Rocket Assisted (HERA) 155 mm howitzer round developed for use by the US Military in order to add additional range to standard howitzers, with a maximum range 30.1 km from a M198 howitzer. The projectile has two dis ...
: An explosive 155 mm howitzer round. BRL conducted several studies to improve its accuracy for colder weather. *
M48 Patton The M48 Patton is an American first-generation main battle tank (MBT) introduced in February 1952, being designated as the 90mm Gun Tank: M48. It was designed as a replacement for the M26 Pershing, M4 Sherman, M46 and M47 Patton tanks, and w ...
: An American main battle tank. BRL conducted vulnerability analysis on this tank series during the Vietnam War and was able to identify causes for their combat losses. *
M1 Abrams The M1 Abrams is a third-generation American main battle tank designed by Chrysler Defense (now General Dynamics Land Systems) and named for General Creighton Abrams. Conceived for modern armored ground warfare and now one of the heaviest t ...
: An American battle tank designed for modern ground warfare. BRL was heavily involved in many aspects of its development and subsequent modifications, especially with its mounted gun and its armor system. * MIM-46 Mauler: A self-propelled anti-aircraft missile system designed to defeat low-flying combat aircraft and short-range ballistic missiles. BRL conducted extensive studies that predicted its performance against certain targets. *M988 Sergeant York: An anti-aircraft gun system used for aerial defense. BRL was assigned to evaluate its performance with 30-, 35-, and 40-mm rounds and played a major role in implementing a digital computer in its control system. As a result, the M988 Sergeant York became the first Army air defense gun to use a digital fire control system. *
Bell UH-1 Iroquois The Bell UH-1 Iroquois (nicknamed "Huey") is a utility military helicopter designed and produced by the American aerospace company Bell Helicopter. It is the first member of the prolific Huey family, as well as the first turbine-powered helico ...
: A utility military helicopter used during the Vietnam War. BRL aided the development of the mounted weapon system for variants specifically designed for combat. * M864: A 155 mm artillery shell. BRL conducted numerous studies to resolve many of its design issues. * Bell AH-15 Cobra: An attack helicopter used by the U.S. Army. BRL provided calculations for the helicopter to implement XM261 warheads as part of its arsenal. * Bradley Fighting Vehicle: An armored vehicle platform used primarily to transport infantry units while providing cover fire. BRL helped improve the vehicle's gun system. *M256 cannon: A 120 mm smoothbore tank gun for the
M1 Abrams The M1 Abrams is a third-generation American main battle tank designed by Chrysler Defense (now General Dynamics Land Systems) and named for General Creighton Abrams. Conceived for modern armored ground warfare and now one of the heaviest t ...
. BRL helped improve the design of the gun tube and developed technology that increased its accuracy by 15 percent. *
M830 The M830 is an American high explosive anti-tank (HEAT) high explosive multi purpose cartridge which has anti-armor and anti-personnel capabilities. This round is meant for the 120 mm M256 main gun of the M1A1 and M1A2 Abrams. The M830 HEAT-MP-T, ...
: A high explosive anti-tank round designed for the
M1 Abrams The M1 Abrams is a third-generation American main battle tank designed by Chrysler Defense (now General Dynamics Land Systems) and named for General Creighton Abrams. Conceived for modern armored ground warfare and now one of the heaviest t ...
. The concept for the projectile was developed by BRL, which later conducted simulation studies that assessed the behavior and viability of the projectile and determined that it would enhance the Abrams tank's performance. *
Chobham armor Chobham armour is the informal name of a composite armour developed in the 1960s at the British tank research centre on Chobham Common, Surrey. The name has since become the common generic term for composite ceramic vehicle armour. Other n ...
: A composite armor developed for armored vehicles. It was tested by BRL and later implemented on the M1 Abrams. In addition, BRL provided research support for the development of the following missiles: the
Atlas An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geogra ...
,
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
, and Minuteman ballistic missiles, the two-stage Pershing tactical missile,
Hawk Hawks are birds of prey of the family Accipitridae. They are widely distributed and are found on all continents except Antarctica. * The subfamily Accipitrinae includes goshawks, sparrowhawks, sharp-shinned hawks and others. This subfa ...
and Lance ground-to-air missiles, the Davy Crockett nuclear weapon system, the Nike Zeus anti-ballistic missile, the
Polaris ballistic missile The UGM-27 Polaris missile was a two-stage solid-fueled nuclear-armed submarine-launched ballistic missile (SLBM). As the United States Navy's first SLBM, it served from 1961 to 1980. In the mid-1950s the Navy was involved in the Jupiter missile ...
, the Skybolt ballistic missile, the Sergeant surface-to-surface missile, the Mercury launch vehicle, and the Saturn V rocket. BRL participated in several large-scale research programs that led to notable scientific milestones. These include the following: *
Project HARP Project HARP, short for High Altitude Research Project, was a joint venture of the United States Department of Defense and Canada's Department of National Defence created with the goal of studying ballistics of re-entry vehicles and collecting ...
: A joint project between the U.S. Army and the Canadian military during the 1960s to obtain meteorological information on the upper atmosphere and study the ballistics of re-entry vehicles. As part of this program, BRL developed the 16-inch HARP gun, which holds the world record for the highest altitude a gun-fired projectile had achieved. *
International Geophysical Year The International Geophysical Year (IGY; french: Année géophysique internationale) was an international scientific project that lasted from 1 July 1957 to 31 December 1958. It marked the end of a long period during the Cold War when scientific i ...
: An international scientific project that honed in on advancing research in eleven different fields of earth science. BRL conducted studies using rocket flights that led to several noteworthy results, including the first simultaneous measurement of the
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magneti ...
and the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays ...
’s electron charge. *
Operation Dominic Operation Dominic was a series of 31 nuclear test explosions with a total yield conducted in 1962 by the United States in the Pacific. This test series was scheduled quickly, in order to respond in kind to the Soviet resumption of testing af ...
: A series of nuclear test explosions conducted by the United States in 1962. During this program, BRL launched 29 sounding rockets to measure the atmospheric characteristics and debris motions associated with the nuclear bursts. *
MBT-70 The MBT-70 (German: ''KPz 70 or KpfPz 70'') was an American– West German joint project to develop a new main battle tank during the 1960s. The MBT-70 was developed by the United States and West Germany in the context of the Cold War, intende ...
: A joint project between the United States and West Germany to develop a new main battle tank. Much of BRL's role was in researching an effective armor system for the vehicle.


See also

*
Harry Diamond Laboratories The Harry Diamond Laboratories (HDL) was a research facility of the Ordnance Development Division of the National Bureau of Standards and later the US Army, most notable for its work on proximity fuzes in World War II. The organization was founde ...
* Atmospheric Sciences Laboratory


External links


DEVCOM ARL Computing History


References

{{Coord, 39, 28, 32, N, 76, 6, 41, W, region:US-MD_type:landmark, display=title Harford County, Maryland Research installations of the United States Army