Backlash (engineering)
   HOME

TheInfoList



OR:

In
mechanical engineering Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, an ...
, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence."p. 1-8 An example, in the context of
gear A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth (called ''cogs''), which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic ...
s and
gear train A gear train is a mechanical system formed by mounting gears on a frame so the teeth of the gears engage. Gear teeth are designed to ensure the pitch circles of engaging gears roll on each other without slipping, providing a smooth transmission ...
s, is the amount of clearance between mated gear teeth. It can be seen when the direction of movement is reversed and the slack or lost motion is taken up before the reversal of motion is complete. It can be heard from the railway couplings when a train reverses direction. Another example is in a
valve train A valvetrain or valve train is a mechanical system that controls the operation of the intake and exhaust valves in an internal combustion engine. The intake valves control the flow of air/fuel mixture (or air alone for direct-injected engines) ...
with mechanical
tappet A tappet is most commonly a component in an internal combustion engine which converts the rotating motion of the camshaft into linear motion of the valves, either directly or indirectly. An earlier use of the term was for part of the valve gear ...
s, where a certain range of lash is necessary for the valves to work properly. Depending on the application, backlash may or may not be desirable. Some amount of backlash is unavoidable in nearly all reversing mechanical couplings, although its effects can be negated or compensated for. In many applications, the theoretical ideal would be zero backlash, but in actual practice some backlash must be allowed to prevent jamming. Reasons for specifying a requirement for backlash include allowing for lubrication, manufacturing errors,
deflection Deflection or deflexion may refer to: Board games * Deflection (chess), a tactic that forces an opposing chess piece to leave a square * Khet (game), formerly ''Deflexion'', an Egyptian-themed chess-like game using lasers Mechanics * Deflection ...
under load, and
thermal expansion Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kinetic ...
. A principal cause of undesired backlash is
wear Wear is the damaging, gradual removal or deformation of material at solid surfaces. Causes of wear can be mechanical (e.g., erosion) or chemical (e.g., corrosion). The study of wear and related processes is referred to as tribology. Wear in ...
.


Gears

Factors affecting the amount of backlash required in a gear train include errors in profile, pitch, tooth thickness, helix angle and center distance, and
run-out Run-out or runout is an inaccuracy of rotating mechanical systems, specifically that the tool or shaft does not rotate exactly in line with the main axis. For example; when drilling, run-out will result in a larger hole than the drill's nomina ...
. The greater the accuracy the smaller the backlash needed. Backlash is most commonly created by cutting the teeth deeper into the gears than the ideal depth. Another way of introducing backlash is by increasing the center distances between the gears. Backlash due to tooth thickness changes is typically measured along the
pitch circle This page lists the standard US nomenclature used in the description of mechanical gear construction and function, together with definitions of the terms. The terminology was established by the American Gear Manufacturers Association (AGMA), unde ...
and is defined by: :b_t=t_i-t_a\; where: Backlash, measured on the pitch circle, due to operating center modifications is defined by: The speed of the machine. The material in the machine :b_c = 2 \left( \Delta c \right) \tan\phi where: Standard practice is to make allowance for half the backlash in the tooth thickness of each gear. However, if the pinion (the smaller of the two gears) is significantly smaller than the gear it is meshing with then it is common practice to account for all of the backlash in the larger gear. This maintains as much strength as possible in the pinion's teeth. The amount of additional material removed when making the gears depends on the pressure angle of the teeth. For a 14.5° pressure angle the extra distance the cutting tool is moved in equals the amount of backlash desired. For a 20° pressure angle the distance equals 0.73 times the amount of backlash desired. As a rule of thumb the average backlash is defined as 0.04 divided by the
diametral pitch A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth (called ''cogs''), which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic p ...
; the minimum being 0.03 divided by the
diametral pitch A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth (called ''cogs''), which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic p ...
and the maximum 0.05 divided by the
diametral pitch A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth (called ''cogs''), which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic p ...
. In a
gear train A gear train is a mechanical system formed by mounting gears on a frame so the teeth of the gears engage. Gear teeth are designed to ensure the pitch circles of engaging gears roll on each other without slipping, providing a smooth transmission ...
, backlash is cumulative. When a gear-train is reversed the driving gear is turned a short distance, equal to the total of all the backlashes, before the final driven gear begins to rotate. At low power outputs, backlash results in inaccurate calculation from the small errors introduced at each change of direction; at large power outputs backlash sends shocks through the whole system and can damage teeth and other components.


Anti-backlash designs

In certain applications, backlash is an undesirable characteristic and should be minimized.


Gear trains where positioning is key but power transmission is light

The best example here is an analog
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmi ...
tuning dial where one may make precise tuning movements both forwards and backwards. Specialized gear designs allow this. One of the more common designs splits the gear into two gears, each half the thickness of the original. One half of the gear is fixed to its shaft while the other half of the gear is allowed to turn on the shaft, but pre-loaded in rotation by small
coil spring A selection of conical coil springs The most common type of spring is the coil spring, which is made out of a long piece of metal that is wound around itself. Coil springs were in use in Roman times, evidence of this can be found in bronze Fib ...
s that rotate the free gear relative to the fixed gear. In this way, the spring compression rotates the free gear until all of the backlash in the system has been taken out; the teeth of the fixed gear press against one side of the teeth of the pinion while the teeth of the free gear press against the other side of the teeth on the pinion. Loads smaller than the force of the springs do not compress the springs and with no gaps between the teeth to be taken up, backlash is eliminated.


Leadscrews where positioning and power are both important

Another area where backlash matters is in leadscrews. Again, as with the gear train example, the culprit is lost motion when reversing a mechanism that is supposed to transmit motion accurately. Instead of gear teeth, the context is screw threads. The linear sliding axes (machine slides) of
machine tool A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All ...
s are an example application. Most machine slides for many decades, and many even today, have been simple (but accurate) cast-iron linear
bearing surface A bearing surface in mechanical engineering is the area of contact between two objects. It usually is used in reference to bolted joints and bearings, but can be applied to a wide variety of engineering applications. On a screw the bearing area ...
s, such as a dovetail- or box-slide, with an Acme leadscrew drive. With just a simple nut, some backlash is inevitable. On manual (non-
CNC Numerical control (also computer numerical control, and commonly called CNC) is the automated control of machining tools (such as drills, lathes, mills, grinders, routers and 3D printers) by means of a computer. A CNC machine processes a p ...
) machine tools, a machinist's means for compensating for backlash is to approach all precise positions using the same direction of travel, that is, if they have been dialing left, and next want to move to a rightward point, they will move rightward ''past'' it, then dial leftward back to it; the setups, tool approaches, and toolpaths must in that case be designed within this constraint. The next-more complex method than the simple nut is a split nut, whose halves can be adjusted, and locked with screws, so that the two sides ride, respectively, against leftward thread and the other side rides rightward faces. Notice the analogy here with the radio dial example using split gears, where the split halves are pushed in opposing directions. Unlike in the radio dial example, the spring tension idea is not useful here, because machine tools taking a cut put too much force against the screw. Any spring light enough to allow slide movement at all would allow cutter chatter at best and slide movement at worst. These screw-adjusted split-nut-on-an-Acme-leadscrew designs cannot eliminate ''all'' backlash on a machine slide unless they are adjusted so tight that the travel starts to bind. Therefore, this idea can't totally obviate the always-approach-from-the-same-direction concept; nevertheless, backlash can be held to a small amount (1 or 2 thousandths of an inch or), which is more convenient, and in some non-precise work is enough to allow one to "ignore" the backlash, i.e., to design as if there were none. CNCs can be programmed to use the always-approach-from-the-same-direction concept, but that is not the normal way they are used today, because hydraulic anti-backlash split nuts, and newer forms of leadscrew than Acme/trapezoidal -- such as recirculating ball screws -- effectively eliminate the backlash. The axis can move in either direction without the go-past-and-come-back motion. The simplest CNCs, such as microlathes or manual-to-CNC conversions, which use nut-and-Acme-screw drives can be programmed to correct for the total backlash on each axis, so that the machine's control system will automatically move the extra distance required to take up the slack when it changes directions. This programmatic "backlash compensation" is a cheap solution, but professional grade CNCs use the more expensive backlash-eliminating drives mentioned above. This allows them to do 3D contouring with a ball-nosed endmill, for example, where the endmill travels around in many directions with constant rigidity and without delays. In mechanical computers a more complex solution is required, namely a frontlash gearbox. This works by turning slightly faster when the direction is reversed to 'use up' the backlash slack. Some motion controllers include backlash compensation. Compensation may be achieved by simply adding extra compensating motion (as described earlier) or by sensing the load's position in a closed loop control scheme. The dynamic response of backlash itself, essentially a delay, makes the position loop less stable and thus more prone to
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
.


Minimum backlash

Minimum backlash is the minimum transverse backlash at the operating pitch circle allowable when the gear tooth with the greatest allowable functional tooth thickness is in mesh with the pinion tooth having its greatest allowable functional tooth thickness, at the tightest allowable center distance, under static conditions. Minimum backlash is defined as the difference between the maximum and minimum backlash occurring in a whole revolution of the larger of a pair of mating gears.


Applications

Non-precision
gear coupling A coupling is a device used to connect two shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join two pieces of rotating equipment while permitting some degree of misalignment or end mov ...
s use backlash to allow for slight angular misalignment. However, backlash is undesirable in precision positioning applications such as machine tool tables. It can be minimized by tighter design features such as
ball screw A ball screw (or ballscrew) is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw. As well as bein ...
s instead of leadscrews, and by using preloaded bearings. A preloaded bearing uses a spring or other compressive force to maintain bearing surfaces in contact despite reversal of direction. There can be significant backlash in unsynchronized transmissions because of the intentional gap between gears in
dog clutch A dog clutch (also known as a positive clutch or dog gears) is a type of clutch that couples two rotating shafts or other rotating components by engagement of interlocking teeth or dogs rather than by friction. The two parts of the clutch are de ...
es. The gap is necessary so that the driver or electronics can engage the gears easily while synchronizing the engine speed with the driveshaft speed. If there was a smaller clearance, it would be nearly impossible to engage the gears because the teeth would interfere with each other in most configurations. In synchronized transmissions, synchromesh solves this problem.


See also

*
List of gear nomenclature This page lists the standard US nomenclature used in the description of mechanical gear construction and function, together with definitions of the terms. The terminology was established by the American Gear Manufacturers Association (AGMA), unde ...
* Hysteresis *
Harmonic drive Strain wave gearing (also known as harmonic gearing) is a type of mechanical gear system that uses a flexible spline with external teeth, which is deformed by a rotating elliptical plug to engage with the internal gear teeth of an outer spline. ...


References

{{Reflist, 30em Gears Screws Mechanical engineering