Atmospheric methane
   HOME

TheInfoList



OR:

Atmospheric methane is the
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
present in Earth's
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A ...
. Atmospheric methane concentrations are of interest because it is one of the most potent
greenhouse gas A greenhouse gas (GHG or GhG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor (), carbon dioxide (), methane ...
es in Earth's atmosphere. Atmospheric methane is rising. The 20-year global warming potential of methane is 84. See Table 8.7. That is, over a 20-year period, it traps 84 times more heat per mass unit than
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
(CO2) and 105 times the effect when accounting for
aerosol An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogen ...
interactions. Global methane concentrations rose from 722 parts per billion (ppb) in pre-industrial times to 1895 ppb by 2021, an increase by a factor of 2.6 and the highest value in at least 800,000 years. Its concentration is higher in the
Northern Hemisphere The Northern Hemisphere is the half of Earth that is north of the Equator. For other planets in the Solar System, north is defined as being in the same celestial hemisphere relative to the invariable plane of the solar system as Earth's Nort ...
since most sources (both natural and human) are located on land and the Northern Hemisphere has more land mass. The concentrations vary seasonally, with, for example, a minimum in the northern tropics during April−May mainly due to removal by the hydroxyl radical. It remains in the atmosphere for 12 years. Early in the Earth's history carbon dioxide and methane likely produced a
greenhouse effect The greenhouse effect is a process that occurs when energy from a planet's host star goes through the planet's atmosphere and heats the planet's surface, but greenhouse gases in the atmosphere prevent some of the heat from returning directly ...
. The carbon dioxide would have been produced by volcanoes and the methane by early microbes. During this time, Earth's earliest life appeared. These first, ancient bacteria added to the methane concentration by converting hydrogen and carbon dioxide into methane and water. Oxygen did not become a major part of the atmosphere until photosynthetic organisms evolved later in Earth's history. With no oxygen, methane stayed in the atmosphere longer and at higher concentrations than it does today. The known sources of methane are predominantly located near the Earth's surface. In combination with vertical atmospheric motions and methane's relatively long lifetime, methane is considered to be a well-mixed gas. In other words, the concentration of methane is taken to be constant with respect to height within the troposphere. The dominant sink of methane in the troposphere is reaction with hydroxyl radicals that are formed by reaction of
singlet oxygen Singlet oxygen, systematically named dioxygen(singlet) and dioxidene, is a gaseous inorganic chemical with the formula O=O (also written as or ), which is in a quantum state where all electrons are spin paired. It is kinetically unstable at ambi ...
atoms with water vapor. Methane is also present in the stratosphere, where methane's concentration decreases with height.


Methane as a greenhouse gas

Methane in the Earth's atmosphere is a strong
greenhouse gas A greenhouse gas (GHG or GhG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor (), carbon dioxide (), methane ...
with a global warming potential (GWP) 84 times greater than CO2 in a 20-year time frame; methane is not as persistent a gas as CO2 (assuming no change in carbon sequestration rates) and tails off to about GWP of 28 for a 100-year time frame. This means that a methane emission is projected to have 28 times the impact on temperature of a carbon dioxide emission of the same mass over the following 100 years assuming no change in the rates of carbon sequestration. Methane has a large effect but for a relatively brief period, having an estimated mean lifetime of 9.1 years in the atmosphere, whereas carbon dioxide is currently given an estimated mean lifetime of over 100 years. The globally averaged concentration of methane in Earth's atmosphere increased by about 150% from 722 ± 25 ppb in 1750 to 1803.1 ± 0.6 ppb in 2011. As of 2016, methane contributed
radiative forcing Radiative forcing (or climate forcing) is the change in energy flux in the atmosphere caused by natural or anthropogenic factors of climate change as measured by watts / metre2. It is a scientific concept used to quantify and compare the extern ...
of 0.62 ± 14% Wm−2, or about 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases. According to NOAA, the atmospheric methane concentration has continued to increase since 2011 to an average global concentration of 1895.3 ± 0.6 ppb as of 2021. The May 2021 peak was 1891.6 ppb, while the April 2022 peak was 1909.6 ppb, a 0.9% increase.


Emissions accounting of methane

The balance between sources and sinks of methane is not yet fully understood. The IPCC Working Group I stated in chapter 2 of the Fourth Assessment Report that there are "large uncertainties in the current bottom-up estimates of components of the global source", and the balance between sources and sinks is not yet well known. The most important sink in the methane cycle is reaction with the hydroxyl radical, which is produced photochemically in the atmosphere. Production of this radical is not fully understood and has a large effect on atmospheric concentrations. This uncertainty is exemplified by observations that have shown between the year 2000 and 2006 increases in atmospheric concentration of methane ceased, for reasons still being investigated. Various research groups give the following values for methane emissions:


Natural sources of atmospheric methane

Any process that results in the production of methane and its release into the atmosphere can be considered a "source". Two main processes that are responsible for methane production include
microorganisms A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
anaerobically converting organic compounds into methane (
methanogenesis Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group ...
), which are widespread in aquatic ecosystems, and ruminant animals. Other natural sources include melting
permafrost Permafrost is ground that continuously remains below 0 °C (32 °F) for two or more years, located on land or under the ocean. Most common in the Northern Hemisphere, around 15% of the Northern Hemisphere or 11% of the global surface ...
, wetlands, plants, and
methane clathrate Methane clathrate (CH4·5.75H2O) or (8CH4·46H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amou ...
s.


Methanogenesis

Most ecological emissions of methane relate directly to methanogens generating methane in warm, moist soils as well as in the digestive tracts of certain animals. Methanogens are methane producing microorganisms. In order to produce energy, they use an anaerobic process called methanogenesis. This process is used in lieu of aerobic, or with oxygen, processes because methanogens are unable to metabolise in the presence of even small concentrations of oxygen. When acetate is broken down in methanogenesis, the result is the release of methane into the surrounding environment. ''
Methanogenesis Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group ...
'', the scientific term for methane production, occurs primarily in anaerobic conditions because of the lack of availability of other oxidants. In these conditions,
microscopic The microscopic scale () is the scale of objects and events smaller than those that can easily be seen by the naked eye, requiring a lens or microscope to see them clearly. In physics, the microscopic scale is sometimes regarded as the scale be ...
organisms called
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaeba ...
use acetate and hydrogen to break down essential resources in a process called
fermentation Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food p ...
. ''Acetoclastic methanogenesis'' – certain archaea cleave
acetate An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
produced during anaerobic fermentation to yield methane and carbon dioxide. :H3C-COOH → CH4 + CO2 ''Hydrogenotrophic methanogenesis'' – archaea
oxidize Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
hydrogen with carbon dioxide to yield methane and water. :4H2 + CO2 → CH4 + 2H2O While acetoclastic methanogenesis and hydrogenotrophic methanogenesis are the two major source reactions for atmospheric methane, other minor biological methane source reactions also occur. For example, it has been discovered that leaf surface wax exposed to
UV radiation Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiatio ...
in the presence of oxygen is an aerobic source of methane.


Wetlands


Animals

Ruminant animals, particularly cows and sheep, contain bacteria in their gastrointestinal systems that help to break down plant material. Some of these microorganisms use the acetate from the plant material to produce methane, and because these bacteria live in the stomachs and intestines of ruminants, whenever the animal "burps" or defecates, it emits methane as well. Based upon a study in the
Snowy Mountains The Snowy Mountains, known informally as "The Snowies", is an IBRA subregion in southern New South Wales, Australia, and is the tallest mountain range in mainland Australia, being part of the continent's Great Dividing Range cordillera syst ...
region, the amount of methane emitted by one cow is equivalent to the amount of methane that around 3.4 hectares of methanotrophic bacteria can consume.Per this source:
:
research in the Snowy Mountains region of Australia showed 8 tonnes of methane oxidized by methanotrophic bacteria per year on a 1,000 hectare farm. 200 cows on the same farm emitted 5.4 tonnes of methane per year. Hence, one cow emitted 27 kg of methane per year, while the bacteria oxidized 8 kg per hectare. The emissions of one cow were oxidized by 27/8 ≈ 3.4 hectare.
Termite Termites are small insects that live in colonies and have distinct castes ( eusocial) and feed on wood or other dead plant matter. Termites comprise the infraorder Isoptera, or alternatively the epifamily Termitoidae, within the order Blat ...
s also contain methanogenic microorganisms in their gut. However, some of these microorganisms are so unique that they live nowhere else in the world except in the third gut of termites. These microorganisms also break down biotic components to produce
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
, as well as methane byproduct. However, unlike ruminants who lose 20 percent of the energy from the plants they eat, termites only lose 2 percent of their energy in the process. Thus comparatively, termites do not have to eat as much food as ruminants to obtain the same amount of energy, and give off proportionally less methane.


Plants

Living plants (e.g. forests) have recently been identified as a potentially important source of methane, possibly being responsible for approximately 10 to 30 percent of atmospheric methane. A 2006 paper calculated emissions of 62–236 Tg a−1, and "this newly identified source may have important implications". However the authors stress "our findings are preliminary with regard to the methane emission strength". These findings have been called into question in a 2007 paper which found "there is no evidence for substantial aerobic methane emission by terrestrial plants, maximally 0.3% of the previously published values". While the details of plant methane emissions have yet to be confirmed, plants as a significant methane source would help fill in the gaps of previous global methane budgets as well as explain large plumes of methane that have been observed over the tropics. In wetlands, where the rate of methane production is high, plants help methane travel into the atmosphere—acting like inverted lightning rods as they direct the gas up through the soil and into the air. They are also suspected to produce methane themselves, but because the plants would have to use aerobic conditions to produce methane, the process itself is still unidentified.


Methane gas from methane clathrates

At high pressures, such as are found on the bottom of the ocean, methane forms a solid
clathrate A clathrate is a chemical substance consisting of a lattice that traps or contains molecules. The word ''clathrate'' is derived from the Latin (), meaning ‘with bars, latticed’. Most clathrate compounds are polymeric and completely envelo ...
with water, known as
methane hydrate Methane clathrate (CH4·5.75H2O) or (8CH4·46H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amou ...
. An unknown, but possibly very large quantity of methane is trapped in this form in ocean sediments. The release of large volumes of methane gas from such sediments into the atmosphere has been suggested as a possible cause for rapid
global warming In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
events in the Earth's distant past, such as the
Paleocene–Eocene Thermal Maximum The Paleocene–Eocene thermal maximum (PETM), alternatively (ETM1), and formerly known as the "Initial Eocene" or "", was a time period with a more than 5–8 °C global average temperature rise across the event. This climate event o ...
of 55 million years ago, and the Great Dying. Theories suggest that should global warming cause them to heat up sufficiently, all of this methane gas could again be released into the atmosphere. Since methane gas is twenty-five times stronger (for a given weight, averaged over 100 years) than as a greenhouse gas; this would immensely magnify the greenhouse effect. However, most of this reservoir of hydrates appears isolated from changes to the surface climate, so any such release is likely to happen over geological timescales of a millennium or more.


Aquatic ecosystems

Natural and anthropogenic methane emissions from aquatic ecosystems are estimated to contribute about half of total global emissions.
Urbanization Urbanization (or urbanisation) refers to the population shift from rural to urban areas, the corresponding decrease in the proportion of people living in rural areas, and the ways in which societies adapt to this change. It is predominantly th ...
and
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phyt ...
are expected to lead to increased methane emissions from aquatic ecosystems.


Permafrost

Permafrost Permafrost is ground that continuously remains below 0 °C (32 °F) for two or more years, located on land or under the ocean. Most common in the Northern Hemisphere, around 15% of the Northern Hemisphere or 11% of the global surface ...
contains almost twice as much carbon as the atmosphere, with ~20 Gt of permafrost-associated methane trapped in
methane clathrate Methane clathrate (CH4·5.75H2O) or (8CH4·46H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amou ...
s. Permafrost thaw results in the formation of thermokarst lakes in ice-rich yedoma deposits. Methane frozen in
permafrost Permafrost is ground that continuously remains below 0 °C (32 °F) for two or more years, located on land or under the ocean. Most common in the Northern Hemisphere, around 15% of the Northern Hemisphere or 11% of the global surface ...
is slowly released as permafrost melts.
Radiocarbon dating Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon. The method was de ...
of trace methane in lake bubbles and soil organic carbon concluded that 0.2 to 2.5 Pg of permafrost carbon has been released as methane and carbon dioxide over the last 60 years. The 2020 heat wave may have released significant methane from
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
deposits in Siberian permafrost. Methane emissions by the 'permafrost carbon feedback' -- amplification of surface warming due to enhanced
radiative forcing Radiative forcing (or climate forcing) is the change in energy flux in the atmosphere caused by natural or anthropogenic factors of climate change as measured by watts / metre2. It is a scientific concept used to quantify and compare the extern ...
by carbon release from permafrost—could contribute an estimated 205 Gt of carbon emissions, leading up to 0.5 °C (0.9 °F) of additional warming by the end of the 21st century. However, recent research based on the carbon isotopic composition of atmospheric methane trapped in bubbles in Antarctic ice suggests that methane emissions from permafrost and methane hydrates were minor during the last
deglaciation Deglaciation is the transition from full glacial conditions during ice ages, to warm interglacials, characterized by global warming and sea level rise due to change in continental ice volume. Thus, it refers to the retreat of a glacier, an ice shee ...
, suggesting that future permafrost methane emissions may be lower than previously estimated.


Anthropogenic sources of atmospheric methane

Slightly over half of the total emission is due to human activity. Since the
Industrial Revolution The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
humans have had a major impact on concentrations of atmospheric methane, increasing atmospheric concentrations roughly 250%. According to the 2021 IPCC report, 30 - 50 percent of the current rise in temperatures is caused by emissions of methane, and reducing methane is a fast way of
climate change mitigation Climate change mitigation is action to limit climate change by reducing emissions of greenhouse gases or removing those gases from the atmosphere. The recent rise in global average temperature is mostly caused by emissions from fossil fuels bu ...
. An alliance of 107 countries, including Brazil, the EU and the US, have joined the pact known as the Global Methane Pledge, committing to a collective goal of reducing global methane emissions by at least 30 percent from 2020 levels by 2030.


Ecological conversion

Conversion of forests and natural environments into agricultural plots increases the amount of nitrogen in the soil, which inhibits methane oxidation, weakening the ability of the methanotrophic bacteria in the soil to act as sinks. Additionally, by changing the level of the water table, humans can directly affect the soil's ability to act as a source or sink. The relationship between water table levels and methane emission is explained in the wetlands section of natural sources.


Farm animals

A 2006 UN FAO report reported that livestock generate more greenhouse gases as measured in CO2 equivalents than the entire transportation sector. Livestock accounts for 9 percent of anthropogenic CO2, 65 percent of anthropogenic nitrous oxide and 37 percent of anthropogenic methane. A senior UN official and co-author of the report, Henning Steinfeld, said "Livestock are one of the most significant contributors to today's most serious environmental problems." Recent NASA research has confirmed the vital role of enteric fermentation in livestock on global warming. "We understand that other greenhouse gases apart from carbon dioxide are important for climate change today," said
Gavin Schmidt Gavin A. Schmidt is a climatologist, climate modeler and Director of the NASA Goddard Institute for Space Studies (GISS) in New York, and co-founder of the award-winning climate science blog RealClimate. Work He was educated at The Corsham Scho ...
, the lead author of the study and a researcher at NASA's Goddard Institute for Space Studies in New York City and Columbia University's Center for Climate Systems Research. Other recent peer reviewed NASA research published in the journal ''Science'' has also indicated that the contribution of methane to global warming has been underestimated. Nicholas Stern, the author of the 2006 Stern Review on climate change has stated "people will need to turn vegetarian if the world is to conquer climate change". President of the National Academy of Sciences Ralph Cicerone (an atmospheric scientist), has indicated the contribution of methane by livestock
flatulence Flatulence, in humans, is the expulsion of gas from the intestines via the anus, commonly referred to as farting. "Flatus" is the medical word for gas generated in the stomach or bowels. A proportion of intestinal gas may be swallowed enviro ...
and eructation to global warming is a "serious topic". Cicerone states "Methane is the second-most-important greenhouse gas in the atmosphere now. The population of beef cattle and dairy cattle has grown so much that methane from cows now is big. This is not a trivial issue." Approximately 5% of the methane is released via the flatus, whereas the other 95% is released via eructation. Vaccines are under development to reduce the amount introduced through eructation. Asparagopsis seaweed as a livestock feed additive has reduced methane emissions by more than 80%.


Rice agriculture

Due to a continuously growing world population, rice agriculture has become one of the most significant anthropogenic sources of methane. With warm weather and water-logged soil, rice paddies act like wetlands, but are generated by humans for the purpose of food production. Due to the swamp-like environment of rice fields, these paddies yield 50–100 million metric tons of methane emission each year. This means that rice agriculture is responsible for approximately 15 to 20 percent of anthropogenic methane emissions. An article written by William F. Ruddiman explores the possibility that methane emissions began to rise as a result of anthropogenic activity 5000 years ago when ancient cultures started to settle and use agriculture, rice irrigation in particular, as a primary food source.


Landfills

Due to the large collections of organic matter and availability of anaerobic conditions, landfills are the third largest source of atmospheric methane in the United States, accounting for roughly 18.2% of methane emissions globally in 2014. When waste is first added to a landfill, oxygen is abundant and thus undergoes aerobic decomposition; during which time very little methane is produced. However, generally within a year oxygen levels are depleted and anaerobic conditions dominate the landfill allowing methanogens to takeover the decomposition process. These methanogens emit methane into the atmosphere and even after the landfill is closed, the mass amount of decaying matter allows the methanogens to continue producing methane for years.


Waste water treatment

Waste water treatment facilities act to remove organic matter, solids, pathogens, and chemical hazards as a result of human contamination. Methane emission in waste treatment facilities occurs as a result of anaerobic treatments of organic compounds and anaerobic
biodegradation Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegra ...
of sludge.


Biomass burning

Incomplete burning of both living and dead organic matter results in the emission of methane. While natural wildfires can contribute to methane emissions, the bulk majority of biomass burning occurs as a result of humans – including everything from accidental burnings by civilians to deliberate burnings used to clear out land to biomass burnings occurring as a result of destroying waste.


Oil and natural gas supply chain

Methane is a primary component of
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
, and thus during the production, processing, storage, transmission, and distribution of natural gas, a significant amount of methane is lost into the atmosphere. According to the EPA ''Inventory of U.S Greenhouse Gas Emissions and Sinks: 1990–2015'' report, 2015 methane emissions from natural gas and petroleum systems totaled 8.1 Tg per year in the United States. Individually, the EPA estimates that the natural gas system emitted 6.5 Tg per year of methane while petroleum systems emitted 1.6 Tg per year of methane. Methane emissions occur in all sectors of the natural gas industry, from drilling and production, through gathering and processing and transmission, to distribution. These emissions occur through normal operation, routine maintenance, fugitive leaks, system upsets, and venting of equipment. In the oil industry, some underground crude contains natural gas that is entrained in the oil at high reservoir pressures. When oil is removed from the reservoir, associated gas is produced. However, a review of methane emissions studies reveals that the EPA ''Inventory of Greenhouse Gas Emissions and Sinks: 1990–2015'' report likely significantly underestimated 2015 methane emissions from the oil and natural gas supply chain. The review concluded that in 2015 the oil and natural gas supply chain emitted 13 Tg per year of methane, which is about 60% more than the EPA report for the same time period. The authors write that the most likely cause for the discrepancy is an under sampling by the EPA of so-called "abnormal operating conditions", during which large quantities of methane can be emitted.


Methane slip from gas engines

The use of natural gas and biogas in ICE (
Internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal co ...
) for such applications as electricity production / cogeneration / CHP (
Combined Heat and Power Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elect ...
) and heavy vehicles or marine vessels such as LNG carriers using the boil off gas for propulsion, emits a certain percentage of UHC, unburned hydrocarbon of which 85% is methane. The climate issues of using gas to fuel ICE may offset or even cancel out the advantages of less CO2 and particle emissions is described in this
2016 EU Issue Paper on methane slip from marine engines
"Emissions of unburnt methane (known as the 'methane slip') were around 7 g per kg LNG at higher engine loads, rising to 23–36 g at lower loads. This increase could be due to slow combustion at lower temperatures, which allows small quantities of gas to avoid the combustion process". Road vehicles run more on low load than marine engines causing relatively higher methane slip.


Coal mining

In 2014
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
researchers reported the discovery of a
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
cloud floating over the Four Corners region of the south-west United States. The discovery was based on data from the
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (120 ...
's Scanning Imaging Absorption Spectrometer for Atmospheric Chartography instrument from 2002 to 2012. The report concluded that "the source is likely from established gas, coal, and
coalbed methane Coalbed methane (CBM or coal-bed methane), coalbed gas, coal seam gas (CSG), or coal-mine methane (CMM) is a form of natural gas extracted from coal beds. In recent decades it has become an important source of energy in United States, Canada, Au ...
mining and processing." The region emitted 590,000 metric tons of methane every year between 2002 and 2012—almost 3.5 times the widely used estimates in the
European Union The European Union (EU) is a supranational union, supranational political union, political and economic union of Member state of the European Union, member states that are located primarily in Europe, Europe. The union has a total area of ...
's Emissions Database for Global Atmospheric Research. In 2019, the International Energy Agency (IEA) estimated that the methane emissions leaking from the world's coalmines are warming the global climate at the same rate as the shipping and aviation industries combined.


Removal processes

Any process that consumes methane from the atmosphere can be considered a "sink" of atmospheric methane. The most prominent of these processes occur as a result of methane either being destroyed in the atmosphere or broken down in soil. Humans have yet to act as any significant sink of atmospheric methane. ''Reaction with the hydroxyl radical'' – The major removal mechanism of methane from the atmosphere involves radical chemistry; it reacts with the hydroxyl radical (·OH), initially formed from water vapor broken down by oxygen atoms that come from the cleavage of
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
by
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
radiation. The reaction of methane with hydroxyl in the
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. Fro ...
or
stratosphere The stratosphere () is the second layer of the atmosphere of the Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air h ...
creates the methyl radical ·CH3 and water vapor. In addition to being the largest known sink for atmospheric methane, this reaction is one of the most important sources of water vapor in the upper atmosphere. Following the reaction of methane with the hydroxyl radical, two dominant pathways of methane oxidation exist: which leads to a net production of ozone, and which causes no net ozone change. For methane oxidation to take the pathway that leads to net ozone production,
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its ...
(NO) must be available to react with CH3O2·. (Nitric oxide can be formed from
nitrogen dioxide Nitrogen dioxide is a chemical compound with the formula . It is one of several nitrogen oxides. is an intermediate in the industrial synthesis of nitric acid, millions of tons of which are produced each year for use primarily in the productio ...
by the action of sunlight.) Otherwise, CH3O2· reacts with the
hydroperoxyl The hydroperoxyl radical, also known as the hydrogen superoxide, is the protonated form of superoxide with the chemical formula HO2. This species plays an important role in the atmosphere and as a reactive oxygen species in cell biology. Stru ...
radical (HO2·), and the oxidation takes the pathway with no net ozone change. Both oxidation pathways lead to a net production of
formaldehyde Formaldehyde ( , ) ( systematic name methanal) is a naturally occurring organic compound with the formula and structure . The pure compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde (refer to section ...
and water vapor. Net production of O3 CH4 + ·OH → CH3· + H2O CH3· + O2 + M → CH3O2· + M CH3O2· + NO → NO2 + CH3O· CH3O· + O2 → HO2· + HCHO HO2· + NO → NO2 + ·OH (2x) NO2 + hv → O(3P) + NO (2x) O(3P) + O2 + M → O3 + M ET: CH4 + 4O2 → HCHO + 2O3 + H2O No net change of O3 CH4 + ·OH → CH3· + H2O CH3· + O2 + M → CH3O2· + M CH3O2· + HO2· + M → CH3O2H + O2 + M CH3O2H + hv → CH3O· + ·OH CH3O· + O2 → HO2· + HCHO ET: CH4 + O2 → HCHO + H2O M represents a random molecule that facilitates energy transfer during the reaction. Note that for the second reaction, there will be a net loss of radicals in the case where CH3O2H is lost to wet deposition before it can undergo
photolysis Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule. ...
such that: CH3O2H + H2O → wet deposition. This reaction in the
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. Fro ...
gives a methane mean lifetime of 9.6 years. Two more minor sinks are soil sinks (160-year mean lifetime) and stratospheric loss by reaction with ·OH, ·Cl and ·O1D in the stratosphere (120-year mean lifetime), giving a net mean lifetime of 8.4 years. Oxidation of methane is the main source of water vapor in the upper stratosphere (beginning at pressure levels around 10 kPa). The methyl radical formed in the first step can, during normal daytime conditions in the troposphere, react with another hydroxyl radical to form
formaldehyde Formaldehyde ( , ) ( systematic name methanal) is a naturally occurring organic compound with the formula and structure . The pure compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde (refer to section ...
. Though the mechanism is different, the result is the same as in the oxidative
pyrolysis The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements '' ...
which is the first step in the combustion of methane: : + → + Formaldehyde can react again with a hydroxyl radical to form carbon dioxide and more water vapor. Sidechains in these reactions may interact with
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
compounds that will likely produce
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
, thus supplanting radicals required in the initial reaction.


Natural sinks of atmospheric methane

Most natural sinks occur as a result of chemical reactions in the atmosphere as well as oxidation by methane consuming bacteria in Earth's soils.


Methanotrophs in soils

Soils act as a major sink for atmospheric methane through the methanotrophic bacteria that reside within them. This occurs with two different types of bacteria. "High capacity-low affinity" methanotrophic bacteria grow in areas of high methane concentration, such as waterlogged soils in wetlands and other moist environments. And in areas of low methane concentration, "low capacity-high affinity" methanotrophic bacteria make use of the methane in the atmosphere to grow, rather than relying on methane in their immediate environment. Forest soils act as good sinks for atmospheric methane because soils are optimally moist for methanotroph activity, and the movement of gases between soil and atmosphere (soil diffusivity) is high. With a lower water table, any methane in the soil has to make it past the methanotrophic bacteria before it can reach the atmosphere. Wetland soils, however, are often sources of atmospheric methane rather than sinks because the water table is much higher, and the methane can be diffused fairly easily into the air without having to compete with the soil's methanotrophs. '' Methanotrophic bacteria in soils'' – Methanotrophic bacteria that reside within soil use methane as a source of carbon in methane oxidation. Methane oxidation allows methanotrophic bacteria to use methane as a source of energy, reacting methane with oxygen and as a result producing carbon dioxide and water. : CH4 + 2O2 → CO2 + 2H2O


Troposphere

The most effective sink of atmospheric methane is the hydroxyl radical in the troposphere, or the lowest portion of Earth's atmosphere. As methane rises into the air, it reacts with the hydroxyl radical to create water vapor and carbon dioxide. The mean lifespan of methane in the atmosphere was estimated at 9.6 years as of 2001; however, increasing emissions of methane over time reduce the concentration of the hydroxyl radical in the atmosphere. With less OH˚ to react with, the lifespan of methane could also increase, resulting in greater concentrations of atmospheric methane. See Table 2.


Stratosphere

If it is not destroyed in the troposphere, methane will last approximately 120 years before it is eventually destroyed in Earth's next atmospheric layer: the stratosphere. Destruction in the stratosphere occurs the same way that it does in the troposphere: methane is oxidized to produce carbon dioxide and water vapor. Based on balloon-borne measurements since 1978, the abundance of stratospheric methane has increased by between 1978 and 2003.


Reaction with free chlorine

The reaction of methane and chlorine atoms acts as a primary sink of Cl atoms and is a primary source of
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid. It is a component of the gastric acid in the dige ...
(HCl) in the stratosphere. CH4 + Cl → CH3 + HCl The HCl produced in this reaction leads to catalytic
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
destruction in the stratosphere. Removal of methane in the lower troposphere may be achieved by chlorine radicals produced by iron salt aerosols, which could be artificially increased without risk to stratospheric ozone.


Trends in methane levels over time

Since the 1800s, atmospheric methane concentrations have increased annually at a rate of about 0.9%.


Global trends in methane levels

Long term atmospheric measurements of methane by
NOAA The National Oceanic and Atmospheric Administration (abbreviated as NOAA ) is an United States scientific and regulatory agency within the United States Department of Commerce that forecasts weather, monitors oceanic and atmospheric conditio ...
show that the build up of methane leveled off during the decade prior to 2006, after nearly tripling since pre-industrial times. Although scientists have yet to determine what caused this reduction in the rate of accumulation of atmospheric methane, it appears it could be due to reduced industrial emissions and drought in wetland areas. Exceptions to this drop in growth rate occurred in 1991 and 1998 when growth rates increased suddenly to 14–15 nmol/mol per year for those years, nearly double the growth rates of the years before. The 1991 spike is understood to be due to the volcanic eruption of Mt. Pinatubo in June of that year. Volcanoes affect atmospheric methane emissions when they erupt, releasing ash and sulfur dioxide into the air. As a result, photochemistry of plants is affected and the removal of methane via the tropospheric hydroxyl radical is reduced. However, growth rates quickly fell due to lower temperatures and global reduction in rainfall. The cause of the 1998 spike is unresolved, but scientists are currently attributing it to a combination of increased wetland and rice field emissions as well as an increased amount of biomass burning. 1998 was also the warmest year since surface temperatures were first recorded, suggesting that anomalously high temperatures can induce elevated methane emission. Data from 2007 suggested methane concentrations were beginning to rise again. This was confirmed in 2010 when a study showed methane levels were on the rise for the 3 years 2007 to 2009. After a decade of near-zero growth in methane levels, "globally averaged atmospheric methane increased by pproximately7 nmol/mol per year during 2007 and 2008. During the first half of 2009, globally averaged atmospheric CH4 was pproximately7 nmol/mol greater than it was in 2008, suggesting that the increase will continue in 2009." From 2015 to 2019 sharp rises in levels of atmospheric methane have been recorded. Methane emissions levels vary greatly depending on the local geography. For both natural and anthropogenic sources, higher temperatures and higher water levels result in the anaerobic environment that is necessary for methane production.


Natural methane cycles

Emissions of methane into the atmosphere are directly related to temperature and moisture. Thus, the natural environmental changes that occur during seasonal change act as a major control of methane emission. Additionally, even changes in temperature during the day can affect the amount of methane that is produced and consumed. For example, plants that produce methane can emit as much as two to four times more methane during the day than during the night. This is directly related to the fact that plants tend to rely on solar energy to enact chemical processes. Additionally, methane emissions are affected by the level of water sources. Seasonal flooding during the spring and summer naturally increases the amount of methane released into the air.


Changes due to human activity


Changes due to pre-industrial human activity

The most clearly identified rise in atmospheric methane as a result of human activity occurred in the 1700s during the industrial revolution. As technology increased at a considerable rate, humans began to build factories and plants, burn fossil fuels for energy, and clear out forests and other vegetation for the purpose of building and agriculture. This growth continued to rise at a rate of almost 1 percent per year until around 1990 when growth rates dropped to almost zero. A 2003 article from William F. Ruddiman, however, indicates that the anthropogenic change in methane may have started 5000 years prior to the industrial revolution. The methane
insolation Solar irradiance is the power per unit area ( surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ...
cycles of the ice core remained stable and predictable until 5000 years ago, most likely due to some anthropogenic effect. Ruddiman suggests that the transition of humans from hunter gatherers into agricultural farming was the first instance of humans affecting methane concentration in the atmosphere. Ruddiman's hypothesis is supported by the fact that early rice irrigation occurred approximately 5000 years ago—the same time the ice core cycles lost their predictability. Due to the inefficiency of humans first learning how to grow rice, extensive rice paddies would have been needed to feed even a small population. These, over-flooded and filled with weeds, would have resulted in huge methane emitting wetlands.


Changes due to industrial human activity

Increases in methane levels due to modern human activities arise from a number of specific sources. * Methane emissions from industrial activity * Methane emissions from extraction of oil and natural gas from underground reserves * Methane emissions from transportation via pipeline of oil and natural gas * Methane emissions from melting permafrost in Arctic regions, due to global warming which is caused by human use of fossil fuels


Emissions due to oil and gas extraction


Natural gas pipelines

One source of methane emissions has been identified as pipelines that transport natural gas; one example is pipelines from Russia to customers in Europe. Near Yamburg and Urengoy exist gas fields with a methane concentration of 97 percent. The gas obtained from these fields is taken and exported to Western and Central Europe through an extensive pipeline system known as the Trans-Siberian natural gas pipeline system. In accordance with the IPCC and other natural gas emissions control groups, measurements had to be taken throughout the pipeline to measure methane emissions from technological discharges and leaks at the pipeline fittings and vents. Although the majority of the natural gas leaks were carbon dioxide, a significant amount of methane was also being consistently released from the pipeline as a result of leaks and breakdowns. In 2001, natural gas emissions from the pipeline and natural gas transportation system accounted for 1 percent of the natural gas produced. Fortunately, between 2001 and 2005, this number reduced to 0.7 percent, and even the 2001 value is still significantly less than that of 1996.


General industrial causes

However, pipeline transportation is only one part of the problem. Howarth ''et al.'' have argued that:
We believe the preponderance of evidence indicates shale gas has a larger GHG reen house gasfootprint than conventional gas, considered over any time scale. The GHG footprint of shale gas also exceeds that of oil or coal when considered at decadal time scales, ..
For subsequent works confirming these results see Howarth's "A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas", "Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy". A 2013 study by Miller ''et al.'' indicates that current greenhouse gas reduction policies in the US are based on what appear to be significant underestimates of anthropogenic methane emissions. The authors state:
We find greenhouse gas emissions from agriculture and fossil fuel extraction and processing (''i.e.,'' oil and/or natural gas) are likely a factor of two or greater than cited in existing studies.


Release of stored arctic methane due to global warming

Global warming due to fossil fuel emissions has caused Arctic methane release, i.e. the release of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
from seas and soils in
permafrost Permafrost is ground that continuously remains below 0 °C (32 °F) for two or more years, located on land or under the ocean. Most common in the Northern Hemisphere, around 15% of the Northern Hemisphere or 11% of the global surface ...
regions of the
Arctic The Arctic ( or ) is a polar regions of Earth, polar region located at the northernmost part of Earth. The Arctic consists of the Arctic Ocean, adjacent seas, and parts of Canada (Yukon, Northwest Territories, Nunavut), Danish Realm (Greenla ...
. Although in the long term, this is a natural process, methane release is being exacerbated and accelerated by
global warming In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
. This results in negative effects, as
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
is itself a powerful
greenhouse gas A greenhouse gas (GHG or GhG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor (), carbon dioxide (), methane ...
. The Arctic region is one of the many natural sources of the greenhouse gas methane. Global warming accelerates its release, due to both release of methane from existing stores, and from
methanogenesis Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group ...
in rotting
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bio ...
. Large quantities of methane are stored in the Arctic in natural gas deposits, permafrost, and as undersea
clathrates A clathrate is a chemical substance consisting of a lattice that traps or contains molecules. The word ''clathrate'' is derived from the Latin (), meaning ‘with bars, latticed’. Most clathrate compounds are polymeric and completely envel ...
. Permafrost and clathrates degrade on warming, thus large releases of methane from these sources may arise as a result of global warming. Other sources of methane include submarine taliks, river transport, ice complex retreat, submarine permafrost and decaying gas hydrate deposits.


Atmospheric impacts

The direct radiative greenhouse gas forcing effect has been estimated at 0.5 W/m2. Methane is a strong GHG with a global warming potential 84 times greater than CO2 in a 20-year time frame. Methane is not as persistent a gas and tails off to about 28 times greater than CO2 for a 100-year time frame. In addition to the direct heating effect and the normal feedbacks, the methane breaks down to carbon dioxide and water. This water is often above the tropopause where little water usually reaches. Ramanathan (1988) notes that both water and ice clouds, when formed at cold lower stratospheric temperatures, are extremely efficient in enhancing the atmospheric greenhouse effect. He also notes that there is a distinct possibility that large increases in future methane may lead to a surface warming that increases nonlinearly with the methane concentration.


Ozone layer

Methane also affects the degradation of the
ozone layer The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet radiation. It contains a high concentration of ozone (O3) in relation to other parts of the atmosphere, although still small in rel ...
, when methane is transformed into water in the stratosphere. This process is enhanced by global warming, because warmer air holds more water vapor than colder air, so the amount of water vapor in the atmosphere increases as it is warmed by the greenhouse effect. Climate models also indicate that greenhouse gases such as carbon dioxide and methane may enhance the transport of water into the stratosphere; though this is not fully understood.


Methane management techniques

In an effort to mitigate climate change, humans have started to develop alternative methods and medicines. For example, in order to counteract the amount of methane that ruminants give off, a type of drug called monensin (marketed as rumensin) has been developed. This drug is classified as an ionophore, which is an antibiotic that is naturally produced by a harmless bacteria strain. This drug not only improves feed efficiency but also reduces the amount of methane gas emitted from the animal and its manure. In addition to medicine, specific manure management techniques have been developed to counteract emissions from livestock manure. Educational resources have begun to be provided for small farms. Management techniques include daily pickup and storage of manure in a completely closed off storage facility that will prevent runoff from making it into bodies of water. The manure can then be kept in storage until it is either reused for fertilizer or taken away and stored in an offsite compost. Nutrient levels of various animal manures are provided for optimal use as compost for gardens and agriculture. In order to reduce effects on methane oxidation in soil, several steps can be taken. Controlling the usage of nitrogen enhancing fertilizer and reducing the amount of nitrogen pollution into the air can both lower inhibition of methane oxidation. Additionally, using drier growing conditions for crops such as rice and selecting strains of crops that produce more food per unit area can reduce the amount of land with ideal conditions for methanogenesis. Careful selection of areas of land conversion (for example, plowing down forests to create agricultural fields) can also reduce the destruction of major areas of methane oxidation. To counteract methane emissions from landfills, on March 12, 1996, the EPA (Environmental Protection Agency) added the "Landfill Rule" to the Clean Air Act. This rule requires large landfills that have ever accepted
municipal solid waste Municipal solid waste (MSW), commonly known as trash or garbage in the United States and rubbish in Britain, is a waste type consisting of everyday items that are discarded by the public. "Garbage" can also refer specifically to food waste ...
, have been used as of November 8, 1987, can hold at least 2.5 million metric tons of waste with a volume greater than 2.5 million cubic meters, and/or have nonmethane organic compound (NMOC) emissions of at least 50 metric tons per year to collect and combust emitted
landfill gas Landfill gas is a mix of different gases created by the action of microorganisms within a landfill as they decompose organic waste, including for example, food waste and paper waste. Landfill gas is approximately forty to sixty percent methane ...
. This set of requirements excludes 96% of the landfills in the USA. While the direct result of this is landfills reducing emission of non-methane compounds that form smog, the indirect result is reduction of methane emissions as well. Furthermore, in an attempt to absorb the methane that is already being produced from landfills, experiments in which nutrients were added to the soil to allow methanotrophs to thrive have been conducted. These nutrient supplemented landfills have been shown to act as a small scale methane sink, allowing the abundance of methanotrophs to sponge the methane from the air to use as energy, effectively reducing the landfill's emissions. To reduce emissions from the natural gas industries, the EPA developed the Natural Gas STAR Program, also known as Gas STAR. Another program was also developed by the EPA to reduce emissions from coal mining. The Coalbed Methane Outreach Program (CMOP) helps and encourages the mining industry to find ways to use or sell
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
that would otherwise be released from the coal mine into the atmosphere.


Methane emissions monitoring

A portable methane detector has been developed which, mounted in a vehicle, can detect excess levels of methane in the ambient atmosphere and differentiate between natural methane from rotting vegetation or manure and gas leaks. As of 2013 the technology was being deployed by
Pacific Gas & Electric The Pacific Gas and Electric Company (PG&E) is an American investor-owned utility (IOU). The company is headquartered in the Pacific Gas & Electric Building, in San Francisco, California. PG&E provides natural gas and electricity to 5.2 milli ...
. The Tropospheric Monitoring Instrument aboard the
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (120 ...
's Sentinel-5P spacecraft launched in October 2017 provides the most detailed methane emissions monitoring which is publicly available. It has a resolution of about 50 square kilometres. MethaneSat is under development by the Environmental Defense Fund in partnership with researchers at
Harvard University Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of highe ...
, to monitor methane emissions with an improved resolution of 1 kilometer. MethaneSAT is designed to monitor 50 major oil and gas facilities, and could also be used for monitoring of landfills and agriculture. It receives funding from Audacious Project (a collaboration of TED and the Gates Foundation), and is projected to launch as soon as 2020.


Measurement of atmospheric methane


Gas chromatography

Methane is typically measured using
gas chromatography Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substanc ...
. Gas chromatography is a type of
chromatography In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the ''mobile phase'', which carries it through a system ( ...
used for separating or analyzing chemical compounds. It is less expensive in general, compared to more advanced methods, but it is more time and labor-intensive.


Spectroscopic method

Spectroscopic methods are the preferred method for atmospheric gas measurements due to its sensitivity and precision. Also, spectroscopic methods are the only way of remotely sensing the atmospheric gases.
Infrared spectroscopy Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functi ...
covers a large spectrum of techniques, one of which detects gases based on absorption spectroscopy. There are various methods for spectroscopic methods, including Differential optical absorption spectroscopy,
Laser-induced fluorescence Laser-induced fluorescence (LIF) or laser-stimulated fluorescence (LSF) is a spectroscopic method in which an atom or molecule is excited to a higher energy level by the absorption of laser light followed by spontaneous emission of light. It was f ...
, and Fourier Transform Infrared.


Cavity ring-down spectroscopy

Cavity ring-down spectroscopy is most widely used IR absorption technique of detecting methane. It is a form of laser absorption spectroscopy which determines the mole fraction to the order of parts per trillion.


See also

*
Climate change In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
*
Global warming In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
*
Permafrost Permafrost is ground that continuously remains below 0 °C (32 °F) for two or more years, located on land or under the ocean. Most common in the Northern Hemisphere, around 15% of the Northern Hemisphere or 11% of the global surface ...


Notes


References


External links


Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions
By UN Environment Programme, 2021.
"Methane in tundra and oceans to be released in atmosphere"


''Biogeosciences Discussions'', 4, 993–1057, 2007
"Methane: A Scientific Journey from Obscurity to Climate Super-Stardom"
September 2004 background report from NASA
Goddard Institute for Space Studies The Goddard Institute for Space Studies (GISS) is a laboratory in the Earth Sciences Division of NASA's Goddard Space Flight Center affiliated with the Columbia University Earth Institute. The institute is located at Columbia University in ...
(GISS)
Methane's Role In Climate Change:Whether natural gas is a savior or destroyer of climate depends on how much is leaking into the atmosphere
By Jeff Johnson, ''Chemical & Engineering News''.
Study Suggests EPA May Seriously Underestimate Methane Gas EmissionsMethane Levels Are Rising, and Scientists Don't Know Why
By Roni Dengler , June 6, 2019
Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement
February 5, 2019.
Why is methane rising?
Julia Fahrenkamp-Uppenbrink, Jun 7, 2019.
Methane emissions from oil and gas exploration are under-reported
June 26, 2019. {{global warming Methane Atmosphere Greenhouse gases