Annihilation
   HOME

TheInfoList



OR:

In
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, annihilation is the process that occurs when a subatomic particle collides with its respective
antiparticle In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antie ...
to produce other particles, such as an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
colliding with a positron to produce two
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s. The total
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
and momentum of the initial pair are conserved in the process and distributed among a set of other particles in the final state. Antiparticles have exactly opposite additive quantum numbers from particles, so the sums of all quantum numbers of such an original pair are zero. Hence, any set of particles may be produced whose total quantum numbers are also zero as long as conservation of energy and
conservation of momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
are obeyed. During a low-energy annihilation,
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
production is favored, since these particles have no mass. High-energy particle colliders produce annihilations where a wide variety of exotic heavy particles are created. The word "annihilation" takes use informally for the interaction of two particles that are not mutual antiparticles not charge conjugate. Some quantum numbers may then not sum to zero in the initial state, but conserve with the same totals in the final state. An example is the "annihilation" of a high-energy
electron antineutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli ...
with an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
to produce a W boson-. If the annihilating particles are
composite Composite or compositing may refer to: Materials * Composite material, a material that is made from several different substances ** Metal matrix composite, composed of metal and other parts ** Cermet, a composite of ceramic and metallic materials ...
, such as
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
s or
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classif ...
s, then several different particles are typically produced in the final state.


Production of a single boson

If the initial two particles are
elementary Elementary may refer to: Arts, entertainment, and media Music * ''Elementary'' (Cindy Morgan album), 2001 * ''Elementary'' (The End album), 2007 * ''Elementary'', a Melvin "Wah-Wah Watson" Ragin album, 1977 Other uses in arts, entertainment, a ...
(not composite), then they may combine to produce only a single elementary
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
, such as a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
(), gluon (), , or a Higgs boson (). If the total energy in the
center-of-momentum frame In physics, the center-of-momentum frame (also zero-momentum frame or COM frame) of a system is the unique (up to velocity but not origin) inertial frame in which the total momentum of the system vanishes. The ''center of momentum'' of a system is ...
is equal to the
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
of a real
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
(which is impossible for a massless boson such as the ), then that created particle will continue to exist until it decays according to its lifetime. Otherwise, the process is understood as the initial creation of a boson that is virtual, which immediately converts into a real particle + antiparticle pair. This is called an s-channel process. An example is the annihilation of an electron with a positron to produce a virtual photon, which converts into a muon and anti-muon. If the energy is large enough, a could replace the photon.


Examples


Electron–positron annihilation

:  +  →  +  When a low-energy
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
annihilates a low-energy positron (antielectron), the most probable result is the creation of two or more
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s, since the only other final-state Standard Model particles that electrons and positrons carry enough mass-energy to produce are
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s, which are approximately 10,000 times less likely to produce, and the creation of only one photon is forbidden by momentum conservation—a single photon would carry nonzero momentum in any frame, including the
center-of-momentum frame In physics, the center-of-momentum frame (also zero-momentum frame or COM frame) of a system is the unique (up to velocity but not origin) inertial frame in which the total momentum of the system vanishes. The ''center of momentum'' of a system is ...
where the total momentum vanishes. Both the annihilating electron and positron particles have a rest energy of about 0.511 million electron-volts (MeV). If their kinetic energies are relatively negligible, this total rest energy appears as the photon energy of the photons produced. Each of the photons then has an energy of about 0.511 MeV. Momentum and energy are both conserved, with 1.022 MeV of photon energy (accounting for the rest energy of the particles) moving in opposite directions (accounting for the total zero momentum of the system). If one or both charged particles carry a larger amount of kinetic energy, various other particles can be produced. Furthermore, the annihilation (or decay) of an electron–positron pair into a ''single'' photon can occur in the presence of a third charged particle, to which the excess momentum can be transferred by a virtual photon from the electron or positron. The inverse process, pair production by a single real photon, is also possible in the electromagnetic field of a third particle.


Proton–antiproton annihilation

When a proton encounters its
antiparticle In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antie ...
(and more generally, if any species of
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classif ...
encounters the corresponding
antibaryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
), the reaction is not as simple as electron–positron annihilation. Unlike an electron, a proton is a
composite particle This is a list of known and hypothesized particles. Elementary particles Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. They are the fundamental ob ...
consisting of three " valence quarks" and an indeterminate number of " sea quarks" bound by gluons. Thus, when a proton encounters an antiproton, one of its quarks, usually a constituent valence quark, may annihilate with an antiquark (which more rarely could be a sea quark) to produce a gluon, after which the gluon together with the remaining quarks, antiquarks, and gluons will undergo a complex process of rearrangement (called hadronization or fragmentation) into a number of
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
s, (mostly
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s and
kaon KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Information Technologies in Karlsruhe. Its first incarnation was developed in 2002 and supported an enhanced version of ...
s), which will share the total energy and momentum. The newly created mesons are unstable, and unless they encounter and interact with some other material, they will decay in a series of reactions that ultimately produce only photons,
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s, positrons, and
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s. This type of reaction will occur between any
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classif ...
(particle consisting of three quarks) and any
antibaryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
consisting of three antiquarks, one of which corresponds to a quark in the baryon. (This reaction is unlikely if at least one among the baryon and anti-baryon is exotic enough that they share no constituent quark flavors.) Antiprotons can and do annihilate with
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s, and likewise antineutrons can annihilate with protons, as discussed below. Reactions in which proton–antiproton annihilation produces as many as 9 mesons have been observed, while production of 13 mesons is theoretically possible. The generated mesons leave the site of the annihilation at moderate fractions of the speed of light and decay with whatever lifetime is appropriate for their type of meson. Similar reactions will occur when an antinucleon annihilates within a more complex
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, save that the resulting mesons, being strongly interacting, have a significant probability of being absorbed by one of the remaining "spectator" nucleons rather than escaping. Since the absorbed energy can be as much as ~2  GeV, it can in principle exceed the
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
of even the heaviest nuclei. Thus, when an antiproton annihilates inside a heavy nucleus such as
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
or
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, partial or complete disruption of the nucleus can occur, releasing large numbers of fast neutrons. Such reactions open the possibility for triggering a significant number of secondary fission reactions in a subcritical mass and may potentially be useful for spacecraft propulsion.


Higgs production

In collisions of two
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
s at very high energies, sea quarks and gluons tend to dominate the interaction rate, so neither nucleon need be an anti-particle for annihilation of a quark pair or "fusion" of two gluons to occur.
Examples Example may refer to: * '' exempli gratia'' (e.g.), usually read out in English as "for example" * .example, reserved as a domain name that may not be installed as a top-level domain of the Internet ** example.com, example.net, example.org, e ...
of such processes contribute to the production of the long-sought Higgs boson. The Higgs is directly produced very weakly by annihilation of light (valence) quarks, but heavy or sea or produced quarks are available. In 2012, the CERN laboratory in Geneva announced the discovery of the Higgs in the debris from proton–proton collisions at the Large Hadron Collider (LHC). The strongest Higgs yield is from fusion of two gluons (via annihilation of a heavy quark pair), while two quarks or antiquarks produce more easily identified events through radiation of a Higgs by a produced virtual vector boson or annihilation of two such vector bosons.


See also

* Pair production *
Creation and annihilation operators Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator (usually d ...
* Photon energy


References


Footnotes


Notations

*


External links

{{Authority control Antimatter