Algebraic topology
   HOME

TheInfoList



OR:

Algebraic topology is a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
that uses tools from
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The ter ...
to study
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
s. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to
homotopy equivalence In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a defo ...
. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.


Main branches of algebraic topology

Below are some of the main areas studied in algebraic topology:


Homotopy groups

In mathematics, homotopy groups are used in algebraic topology to classify
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
s. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.


Homology

In algebraic topology and
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The ter ...
, homology (in part from Greek ὁμός ''homos'' "identical") is a certain general procedure to associate a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s or
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
with a given mathematical object such as a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
or a group.


Cohomology

In homology theory and algebraic topology, cohomology is a general term for a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s defined from a cochain complex. That is, cohomology is defined as the abstract study of cochains,
cocycle In mathematics a cocycle is a closed cochain. Cocycles are used in algebraic topology to express obstructions (for example, to integrating a differential equation on a closed manifold). They are likewise used in group cohomology. In autonomous ...
s, and coboundaries. Cohomology can be viewed as a method of assigning algebraic invariants to a topological space that has a more refined algebraic structure than does homology. Cohomology arises from the algebraic dualization of the construction of homology. In less abstract language, cochains in the fundamental sense should assign 'quantities' to the ''
chains A chain is a serial assembly of connected pieces, called links, typically made of metal, with an overall character similar to that of a rope in that it is flexible and curved in compression but linear, rigid, and load-bearing in tension. ...
'' of homology theory.


Manifolds

A manifold is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
that near each point resembles
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
. Examples include the plane, the
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
, and the
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does n ...
, which can all be realized in three dimensions, but also the Klein bottle and real projective plane which cannot be embedded in three dimensions, but can be embedded in four dimensions. Typically, results in algebraic topology focus on global, non-differentiable aspects of manifolds; for example Poincaré duality.


Knot theory

Knot theory is the study of
mathematical knot In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of ...
s. While inspired by knots that appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined so that it cannot be undone. In precise mathematical language, a knot is an embedding of a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
in 3-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
, \mathbb^3. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.


Complexes

A simplicial complex is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
of a certain kind, constructed by "gluing together" points, line segments, triangles, and their ''n''-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. A CW complex is a type of topological space introduced by
J. H. C. Whitehead John Henry Constantine Whitehead FRS (11 November 1904 – 8 May 1960), known as Henry, was a British mathematician and was one of the founders of homotopy theory. He was born in Chennai (then known as Madras), in India, and died in Princeton, ...
to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex).


Method of algebraic invariants

An older name for the subject was combinatorial topology, implying an emphasis on how a space X was constructed from simpler ones (the modern standard tool for such construction is the
CW complex A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This cl ...
). In the 1920s and 1930s, there was growing emphasis on investigating topological spaces by finding correspondences from them to algebraic
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, which led to the change of name to algebraic topology. The combinatorial topology name is still sometimes used to emphasize an algorithmic approach based on decomposition of spaces.. In the algebraic approach, one finds a correspondence between spaces and
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
that respects the relation of homeomorphism (or more general
homotopy In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deform ...
) of spaces. This allows one to recast statements about topological spaces into statements about groups, which have a great deal of manageable structure, often making these statement easier to prove. Two major ways in which this can be done are through fundamental groups, or more generally homotopy theory, and through homology and
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be view ...
groups. The fundamental groups give us basic information about the structure of a topological space, but they are often nonabelian and can be difficult to work with. The fundamental group of a (finite) simplicial complex does have a finite presentation. Homology and cohomology groups, on the other hand, are abelian and in many important cases finitely generated.
Finitely generated abelian group In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, ...
s are completely classified and are particularly easy to work with.


Setting in category theory

In general, all constructions of algebraic topology are functorial; the notions of category, functor and natural transformation originated here. Fundamental groups and homology and cohomology groups are not only ''invariants'' of the underlying topological space, in the sense that two topological spaces which are homeomorphic have the same associated groups, but their associated morphisms also correspond—a continuous mapping of spaces induces a group homomorphism on the associated groups, and these homomorphisms can be used to show non-existence (or, much more deeply, existence) of mappings. One of the first mathematicians to work with different types of cohomology was Georges de Rham. One can use the differential structure of smooth manifolds via de Rham cohomology, or
Čech Čech (feminine Čechová) is a Czech surname meaning Czech. It was used to distinguish an inhabitant of Bohemia from Slovaks, Moravians and other ethnic groups. Notable people with the surname include: * Dana Čechová (born 1983), Czech tab ...
or sheaf cohomology to investigate the solvability of
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, ...
s defined on the manifold in question. De Rham showed that all of these approaches were interrelated and that, for a closed, oriented manifold, the Betti numbers derived through simplicial homology were the same Betti numbers as those derived through de Rham cohomology. This was extended in the 1950s, when Samuel Eilenberg and Norman Steenrod generalized this approach. They defined homology and cohomology as functors equipped with natural transformations subject to certain axioms (e.g., a weak equivalence of spaces passes to an isomorphism of homology groups), verified that all existing (co)homology theories satisfied these axioms, and then proved that such an axiomatization uniquely characterized the theory.


Applications of algebraic topology

Classic applications of algebraic topology include: * The
Brouwer fixed point theorem Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a compact convex set to itself there is a point x_0 such that f(x_0)=x_0. The simple ...
: every
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous g ...
map from the unit ''n''-disk to itself has a fixed point. * The free rank of the ''n''th homology group of a simplicial complex is the ''n''th Betti number, which allows one to calculate the Euler–Poincaré characteristic. * One can use the differential structure of smooth manifolds via de Rham cohomology, or
Čech Čech (feminine Čechová) is a Czech surname meaning Czech. It was used to distinguish an inhabitant of Bohemia from Slovaks, Moravians and other ethnic groups. Notable people with the surname include: * Dana Čechová (born 1983), Czech tab ...
or sheaf cohomology to investigate the solvability of
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, ...
s defined on the manifold in question. * A manifold is orientable when the top-dimensional integral homology group is the integers, and is non-orientable when it is 0. * The ''n''-sphere admits a nowhere-vanishing continuous unit vector field if and only if ''n'' is odd. (For ''n'' = 2, this is sometimes called the " hairy ball theorem".) * The Borsuk–Ulam theorem: any continuous map from the ''n''-sphere to Euclidean ''n''-space identifies at least one pair of antipodal points. * Any subgroup of a free group is free. This result is quite interesting, because the statement is purely algebraic yet the simplest known proof is topological. Namely, any free group ''G'' may be realized as the fundamental group of a graph ''X''. The main theorem on covering spaces tells us that every subgroup ''H'' of ''G'' is the fundamental group of some covering space ''Y'' of ''X''; but every such ''Y'' is again a graph. Therefore, its fundamental group ''H'' is free. On the other hand, this type of application is also handled more simply by the use of covering morphisms of groupoids, and that technique has yielded subgroup theorems not yet proved by methods of algebraic topology; see . * Topological combinatorics.


Notable algebraic topologists


Important theorems in algebraic topology


See also


Notes


References

* ''(Discusses generalized versions of van Kampen's theorem applied to topological spaces and simplicial sets).'' *. * ''(Gives a broad view of higher-dimensional van Kampen theorems involving multiple groupoids)''. *. "Gives a general theorem on the
fundamental groupoid In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a ...
with a set of base points of a space which is the union of open sets." *. *. "The first 2-dimensional version of van Kampen's theorem." * This provides a homotopy theoretic approach to basic algebraic topology, without needing a basis in singular homology, or the method of simplicial approximation. It contains a lot of material on
crossed module In mathematics, and especially in homotopy theory, a crossed module consists of groups G and H, where G acts on H by automorphisms (which we will write on the left, (g,h) \mapsto g \cdot h , and a homomorphism of groups : d\colon H \longrighta ...
s. * *. A functorial, algebraic approach originally by Greenberg with geometric flavoring added by Harper. *. A modern, geometrically flavoured introduction to algebraic topology. * *. * *


Further reading

* and . * * Section 2.7 provides a category-theoretic presentation of the theorem as a colimit in the category of groupoids. {{DEFAULTSORT:Algebraic Topology