100,000-year problem
   HOME

TheInfoList



OR:

The 100,000-year problem ("100 ky problem", "100 ka problem") of the
Milankovitch theory Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypoth ...
of
orbital forcing Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the sun (see Milankovitch cycles). These orbital changes modify the total amount of sunlight reaching the Earth by up ...
refers to a discrepancy between the reconstructed
geologic temperature record The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because ...
and the reconstructed amount of incoming solar radiation, or
insolation Solar irradiance is the power per unit area ( surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ...
over the past 800,000 years. Due to variations in the Earth's orbit, the amount of insolation varies with periods of around 21,000, 40,000, 100,000, and 400,000 years. Variations in the amount of incident solar energy drive changes in the
climate Climate is the long-term weather pattern in an area, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorologi ...
of the Earth, and are recognised as a key factor in the timing of initiation and termination of
glaciation A glacial period (alternatively glacial or glaciation) is an interval of time (thousands of years) within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate be ...
s. While there is a Milankovitch cycle in the range of 100,000 years, related to Earth's orbital eccentricity, its contribution to variation in insolation is much smaller than those of
precession Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In oth ...
and
obliquity In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbi ...
. The 100,000-year-problem refers to the lack of an obvious explanation for the periodicity of
ice age An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages and gre ...
s at roughly 100,000 years for the past million years, but not before, when the dominant periodicity corresponded to 41,000 years. The unexplained transition between the two periodicity regimes is known as the Mid-Pleistocene Transition, dated to some 800,000 years ago. The related "400,000-year-problem" refers to the absence of a 400,000-year periodicity due to orbital eccentricity in the geological temperature record over the past 1.2 million years. The transition in periodicity from 41,000 years to 100,000 years can now be reproduced in numerical simulations that include a decreasing trend in
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
and glacially induced removal of
regolith Regolith () is a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock. It includes dust, broken rocks, and other related materials and is present on Earth, the Moon, Mars, some asteroids, and other terrestr ...
, as explained in more detail in the article '' Mid-Pleistocene Transition''.


Recognition of the 100,000-year cycle

The
geologic temperature record The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because ...
can be reconstructed from sedimentary evidence. Perhaps the most useful paleotemperature indicator of past climate is the
fractionation Fractionation is a separation process in which a certain quantity of a mixture (of gases, solids, liquids, enzymes, or isotopes, or a suspension) is divided during a phase transition, into a number of smaller quantities (fractions) in which the ...
of
oxygen isotope There are three known stable isotopes of oxygen (8O): , , and . Radioactive isotopes ranging from to have also been characterized, all short-lived. The longest-lived radioisotope is with a half-life of , while the shortest-lived isotope is ...
s, denoted . This fractionation is controlled mainly by the amount of water locked up in ice and the absolute temperature of the planet, and has allowed a timescale of
marine isotope stage Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data reflecting changes in temperature derived from data f ...
s to be constructed. By the late 1990s, records of air (in the
Vostok Vostok refers to east in Russian but may also refer to: Spaceflight * Vostok programme, Soviet human spaceflight project * Vostok (spacecraft), a type of spacecraft built by the Soviet Union * Vostok (rocket family), family of rockets derived from ...
ice core) and marine
sediments Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity In physics, gravity () is a fundame ...
was available and was compared with estimates of
insolation Solar irradiance is the power per unit area ( surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ...
, which should affect both temperature and ice volume. As described by Shackleton (2000), the deep-sea sediment record of "is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm". Shackleton (2000) adjusted the time scale of the Vostok ice core record to fit the assumed
orbital forcing Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the sun (see Milankovitch cycles). These orbital changes modify the total amount of sunlight reaching the Earth by up ...
and used spectral analysis to identify and subtract the component of the record that in this interpretation could be attributed to a linear (directly proportional) response to the orbital forcing. The residual signal (the remainder), when compared with the residual from a similarly retuned marine core isotope record, was used to estimate the proportion of the signal that was attributable to ice volume, with the rest (having attempted to allow for the Dole effect) being attributed to temperature changes in the deep water. The 100,000-year component of ice volume variation was found to match sea level records based on coral age determinations, and to lag orbital eccentricity by several thousand years, as would be expected if orbital eccentricity were the pacing mechanism. Strong non-linear "jumps" in the record appear at deglaciations, although the 100,000-year periodicity was not the strongest periodicity in this "pure" ice volume record. The separate deep sea temperature record was found to vary directly in phase with orbital eccentricity, as did Antarctic temperature and CO2; so eccentricity appears to exert a geologically immediate effect on air temperatures, deep sea temperatures, and atmospheric carbon dioxide concentrations. Shackleton (2000) concluded: "The effect of orbital eccentricity probably enters the paleoclimatic record through an influence on the concentration of atmospheric CO2". Elkibbi and Rial (2001) identified the 100 ka cycle as one of five main challenges met by the Milankovitch model of
orbital forcing Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the sun (see Milankovitch cycles). These orbital changes modify the total amount of sunlight reaching the Earth by up ...
of the ice ages.


Hypotheses to explain the problem

As the 100,000-year periodicity only dominates the climate of the past million years, there is insufficient information to separate the component frequencies of eccentricity using spectral analysis, making the reliable detection of significant longer-term trends more difficult, although the spectral analysis of much longer palaeoclimate records, such as the Lisiecki and Raymo stack of marine cores and James Zachos' composite isotopic record, helps to put the last million years in longer term context. Hence there is still no clear proof of the mechanism responsible for the 100 ka periodicity—but there are several credible hypotheses.


Climatic resonance

The mechanism may be internal to the Earth system. The Earth's climate system may have a natural
resonance frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillat ...
of 100 ka; that is to say, feedback processes within the climate automatically produce a 100 ka effect, much as a bell naturally rings at a certain pitch. Opponents to this claim point out that the resonance would have to have developed 1 million years ago, as a 100 ka periodicity was weak to non-existent for the preceding 2 million years. This is feasible—
continental drift Continental drift is the hypothesis that the Earth's continents have moved over geologic time relative to each other, thus appearing to have "drifted" across the ocean bed. The idea of continental drift has been subsumed into the science of pl ...
and
sea floor spreading Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener an ...
rate change have been postulated as possible causes of such a change. Free oscillations of components of the Earth system have been considered as a cause, but too few Earth systems have a thermal inertia on a thousand-year timescale for any long-term changes to accumulate. The most common hypothesis looks to the Northern Hemisphere ice sheets, which might expand through a few shorter cycles until large enough to undergo a sudden collapse. The 100,000-year problem has been scrutinized by José A. Rial, Jeseung Oh and Elizabeth Reischmann who find that master-slave synchronization between the climate systems natural frequencies and the eccentricity forcing started the 100 ky ice ages of the late Pleistocene and explain their large amplitude.


Orbital inclination

Orbital inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth ...
has a 100 ka periodicity, while
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
's 95 and 125ka periods could inter-react to give a 108ka effect. While it is possible that the less significant, and originally overlooked, inclination variability has a deep effect on climate, the eccentricity only modifies insolation by a small amount: 1–2% of the shift caused by the 21,000-year precession and 41,000-year obliquity cycles. Such a big impact from inclination would therefore be disproportionate in comparison to other cycles. One possible mechanism suggested to account for this was the passage of Earth through regions of cosmic dust. Our eccentric orbit would take us through dusty clouds in space, which would act to occlude some of the incoming radiation, shadowing the Earth. In such a scenario, the abundance of the isotope 3He, produced by
solar ray ''Solar Ray'' (stylized and subtitled as ''SOLAR RAY Hirasawa best recycling album Recycled by P-MODEL kernel'') is a 2001 remix album by Susumu Hirasawa. It is the centerpiece of "Hirasawa Energy Works", a project to produce music in an ecologic ...
s splitting gases in the upper atmosphere, would be expected to decrease—and initial investigations did indeed find such a drop in 3He abundance. Others have argued possible effects from the dust entering the atmosphere itself, for example by increasing cloud cover (on July 9 and January 9, when the Earth passes through the invariable plane, mesospheric cloud increases). Therefore, the 100 ka eccentricity cycle can act as a "pacemaker" to the system, amplifying the effect of precession and obliquity cycles at key moments, with its perturbation.


Precession cycles

A similar suggestion holds the 21,636-year precession cycles solely responsible. Ice ages are characterized by the slow buildup of ice volume, followed by relatively swift melting phases. It is possible that ice built up over several precession cycles, only melting after four or five such cycles.


Dust and Albedo

It has been suggested that ice-sheet albedo and dust are responsible. The high albedo of northern ice sheets will resist climatic warming from Milankovitch maxima, unless they are covered in dust. Dust episodes occur just before each interglacial warming period, and it is claimed that the resulting reduced albedo of northern ice sheets assists in interglacial warming. Dust episodes are said to be caused by low atmospheric creating -deserts in northern China upland areas, with the resulting dust creating the Loess Pleateau and coating the northern ice sheets.


Solar luminosity fluctuation

A mechanism that may account for periodic fluctuations in solar luminosity has also been proposed as an explanation. Diffusion waves occurring within the sun can be modeled in such a way that they explain the observed climatic shifts on earth.


Land vs. oceanic photosynthesis

The Dole effect describes trends in arising from trends in the relative importance of land-dwelling and oceanic photosynthesizers. Such a variation is a plausible cause of the phenomenon.


Ongoing research

The recovery of higher-
resolution Resolution(s) may refer to: Common meanings * Resolution (debate), the statement which is debated in policy debate * Resolution (law), a written motion adopted by a deliberative body * New Year's resolution, a commitment that an individual mak ...
ice cores spanning more of the past 1,000,000 years by the ongoing
EPICA Epica or EPICA may refer to: * Epica (band), a Dutch symphonic metal band * ''Epica'' (Kamelot album), 2003 * ''Epica'' (Audiomachine album), 2012 * The European Project for Ice Coring in Antarctica (EPICA) * The Epica Awards (International Adver ...
project may help shed more light on the matter. A new, high-precision dating method developed by the team allows better correlation of the various factors involved and puts the ice core chronologies on a stronger temporal footing, endorsing the traditional Milankovitch hypothesis, that climate variations are controlled by insolation in the northern hemisphere. The new chronology is inconsistent with the "inclination" theory of the 100,000-year cycle. The establishment of leads and lags against different orbital forcing components with this method—which uses the direct insolation control over nitrogen-oxygen ratios in ice core bubbles—is in principle a great improvement in the temporal resolution of these records and another significant validation of the Milankovitch hypothesis. An international climate modelling exercise (Abe-ouchi ''et al.'', Nature, 2013) demonstrated that climate models can replicate the 100,000-year cyclicity given the orbital forcing and carbon dioxide levels of the late Pleistocene. The isostatic history of ice sheets was implicated in mediating the 100,000-year response to the orbital forcing. Larger ice sheets are lower in elevation because they depress the continental crust upon which they sit, and are therefore more vulnerable to melting.


See also

*
Brunhes–Matuyama reversal The Brunhes–Matuyama reversal, named after Bernard Brunhes and Motonori Matuyama, was a geologic event, approximately 781,000 years ago, when the Earth's magnetic field last underwent reversal. Estimations vary as to the abruptness of the reve ...
*
Chibanian The Chibanian, widely known by its previous designation of Middle Pleistocene, is an age in the international geologic timescale or a stage in chronostratigraphy, being a division of the Pleistocene Epoch within the ongoing Quaternary Period. T ...
*
Milankovitch cycles Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypot ...
*
Paleoclimatology Paleoclimatology (American and British English spelling differences, British spelling, palaeoclimatology) is the study of climates for which direct measurements were not taken. As instrumental records only span a tiny part of Earth's history, the ...
*
Timeline of glaciation There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago ...


References

{{DEFAULTSORT:100, 000-Year Problem Ice ages History of climate variability and change