1,2-migration
   HOME

TheInfoList



OR:

A 1,2-rearrangement or 1,2-migration or 1,2-shift or Whitmore 1,2-shift is an organic reaction where a substituent moves from one atom to another atom in a
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
. In a 1,2 shift the movement involves two adjacent atoms but moves over larger distances are possible. In the example below the substituent R moves from carbon atom C2 to C3. The rearrangement is intramolecular and the starting compound and reaction product are structural isomers. The 1,2-rearrangement belongs to a broad class of chemical reactions called rearrangement reactions. A rearrangement involving a
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
atom is called a 1,2-hydride shift. If the substituent being rearranged is an
alkyl In organic chemistry, an alkyl group is an alkane missing one hydrogen. The term ''alkyl'' is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of . A cycloalkyl is derived from a cycloa ...
group, it is named according to the alkyl group's
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
: i.e. 1,2-methanide shift, 1,2-ethanide shift, etc.


Reaction mechanism

A 1,2-rearrangement is often initialised by the formation of a reactive intermediate such as: *a carbocation by heterolysis in a nucleophilic rearrangement or anionotropic rearrangement *a carbanion in an electrophilic rearrangement or cationotropic rearrangement *a
free radical A daughter category of ''Ageing'', this category deals only with the biological aspects of ageing. Ageing Ailments of unknown cause Biogerontology Biological processes Causes of death Cellular processes Gerontology Life extension Metabo ...
by homolysis *a
nitrene In chemistry, a nitrene or imene () is the nitrogen analogue of a carbene. The nitrogen atom is uncharged and univalent, so it has only 6 electrons in its valence level—two covalent bonded and four non-bonded electrons. It is therefore consid ...
. The driving force for the actual migration of a substituent in step two of the rearrangement is the formation of a more stable intermediate. For instance a tertiary carbocation is more stable than a secondary carbocation and therefore the SN1 reaction of neopentyl bromide with ethanol yields tert-pentyl ethyl ether. Carbocation rearrangements are more common than the carbanion or radical counterparts. This observation can be explained on the basis of
Hückel's rule In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4''n'' + 2 π electrons, where ''n'' is a non-negative integer. The quantum mechanical basis for its formulation was ...
. A cyclic carbocationic
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
is aromatic and stabilized because it holds 2 electrons. In an anionic transition state on the other hand 4 electrons are present thus antiaromatic and destabilized. A radical transition state is neither stabilized or destabilized. The most important carbocation 1,2-shift is the
Wagner–Meerwein rearrangement A Wagner–Meerwein rearrangement is a class of carbocation 1,2-rearrangement reactions in which a hydrogen, alkyl or aryl group migrates from one carbon to a neighboring carbon. They can be described as cationic ,2sigmatropic rearrangements, p ...
. A carbanionic 1,2-shift is involved in the
benzilic acid rearrangement The benzilic acid rearrangement is formally the 1,2-rearrangement of 1,2-diketones to form α- hydroxy–carboxylic acids using a base. This reaction receives its name from the reaction of benzil with potassium hydroxide to form benzilic acid. Fir ...
.


Radical 1,2-rearrangements

The first radical 1,2-rearrangement reported by
Heinrich Otto Wieland Heinrich Otto Wieland (; 4 June 1877 – 5 August 1957) was a German chemist. He won the 1927 Nobel Prize in Chemistry for his research into the bile acids. Career In 1901 Wieland received his doctorate at the University of Munich while studyi ...
in 1911 was the conversion of bis(triphenylmethyl)peroxide 1 to the tetraphenylethane 2. The reaction proceeds through the triphenylmethoxyl radical A, a rearrangement to diphenylphenoxymethyl C and its dimerization. It is unclear to this day whether in this rearrangement the cyclohexadienyl radical intermediate B is a
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
or a reactive intermediate as it (or any other such species) has thus far eluded detection by ESR spectroscopy. An example of a less common radical 1,2-shift can be found in the gas phase pyrolysis of certain polycyclic aromatic compounds. The energy required in an
aryl radical An aryl radical in organic chemistry is a reactive intermediate and an arene compound incorporating one free radical carbon atom as part of the ring structure. As such it is the radical counterpart of the arenium ion. The parent compound is the phen ...
for the 1,2-shift can be high (up to 60
kcal The calorie is a unit of energy. For historical reasons, two main definitions of "calorie" are in wide use. The large calorie, food calorie, or kilogram calorie was originally defined as the amount of heat needed to raise the temperature of o ...
/ mol or 250 kJ/mol) but much less than that required for a proton abstraction to an
aryne Arynes and benzynes are highly reactive species derived from an aromatic ring by removal of two substituents. Arynes are examples of didehydroarenes (1,2-didehydroarenes in this case), although 1,3- and 1,4-didehydroarenes are also known. Arynes a ...
(82 kcal/mol or 340 kJ/mol). In
alkene In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. Alkene is often used as synonym of olefin, that is, any hydrocarbon containing one or more double bonds.H. Stephen Stoker (2015): General, Organic, an ...
radicals proton abstraction to an alkyne is preferred.


1,2-Rearrangements

The following mechanisms involve a 1,2-rearrangement: *
1,2-Wittig rearrangement A 1,2-Wittig rearrangement is a categorization of chemical reactions in organic chemistry, and consists of a 1,2-rearrangement of an ether with an alkyllithium compound. The reaction is named for Nobel Prize winning chemist Georg Wittig. : \maths ...
* Alpha-ketol rearrangement *
Beckmann rearrangement The Beckmann rearrangement, named after the German chemist Ernst Otto Beckmann (1853–1923), is a rearrangement of an oxime functional group to substituted amides. The rearrangement has also been successfully performed on haloimines and nitrone ...
*
Benzilic acid rearrangement The benzilic acid rearrangement is formally the 1,2-rearrangement of 1,2-diketones to form α- hydroxy–carboxylic acids using a base. This reaction receives its name from the reaction of benzil with potassium hydroxide to form benzilic acid. Fir ...
*
Brook rearrangement In organic chemistry the Brook rearrangement refers to any ,''n''carbon to oxygen silyl migration. The rearrangement was first observed in the late 1950s by Canadian chemist Adrian Gibbs Brook (1924–2013), after which the reaction is named. The ...
* Criegee rearrangement *
Curtius rearrangement The Curtius rearrangement (or Curtius reaction or Curtius degradation), first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas. The isocyanate then undergoes attack by a va ...
* Dowd–Beckwith ring expansion reaction *
Favorskii rearrangement The Favorskii rearrangement is principally a rearrangement of cyclopropanones and α-halo ketones that leads to carboxylic acid derivatives. In the case of cyclic α-halo ketones, the Favorskii rearrangement constitutes a ring contraction. This ...
*
Friedel–Crafts reaction The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reacti ...
*
Fritsch–Buttenberg–Wiechell rearrangement The Fritsch–Buttenberg–Wiechell rearrangement, named for Paul Ernst Moritz Fritsch (1859–1913), Wilhelm Paul Buttenberg, and Heinrich G. Wiechell, is a chemical reaction whereby a 1,1-diaryl-2-bromo-alkene rearranges to a 1,2-diaryl- alkyne ...
* Halogen dance rearrangement *
Hofmann rearrangement The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one fewer carbon atom. The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to gi ...
*
Lossen rearrangement The Lossen rearrangement is the conversion of a hydroxamate ester to an isocyanate. Typically O-acyl, sulfonyl, or phosphoryl O-derivative are employed. The isocyanate can be used further to generate ureas in the presence of amines or generate ...
*
Pinacol rearrangement The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions. The name of the rearrangement reaction comes from the rearrangemen ...
*
Seyferth–Gilbert homologation The Seyferth–Gilbert homologation is a chemical reaction of an aryl ketone 1 (or aldehyde) with dimethyl (diazomethyl)phosphonate 2 and potassium tert-butoxide to give substituted alkynes 3. Dimethyl (diazomethyl)phosphonate 2 is often called th ...
* SN1 reaction (generally) *
Stevens rearrangement The Stevens rearrangement in organic chemistry is an organic reaction converting quaternary ammonium salts and sulfonium salts to the corresponding amines or sulfides in presence of a strong base in a 1,2-rearrangement. The reactants can b ...
* Stieglitz rearrangement *
Wagner–Meerwein rearrangement A Wagner–Meerwein rearrangement is a class of carbocation 1,2-rearrangement reactions in which a hydrogen, alkyl or aryl group migrates from one carbon to a neighboring carbon. They can be described as cationic ,2sigmatropic rearrangements, p ...
* Westphalen–Lettré rearrangement *
Wolff rearrangement The Wolff rearrangement is a reaction in organic chemistry in which an α-diazocarbonyl compound is converted into a ketene by loss of dinitrogen with accompanying 1,2-rearrangement. The Wolff rearrangement yields a ketene as an intermediate produ ...


1,3-rearrangements

1,3-rearrangements take place over 3 carbon atoms. Examples: * the
Fries rearrangement The Fries rearrangement, named for the German chemist Karl Theophil Fries, is a rearrangement reaction of a phenolic ester to a hydroxy aryl ketone by catalysis of Lewis acids. It involves migration of an acyl group of phenol ester to the ar ...
* a 1,3-alkyl shift of
verbenone Verbenone is a natural organic compound classified as a terpene that is found naturally in a variety of plants. The chemical has a pleasant characteristic odor. Besides being a natural constituent of plants, it and its analogs are insect pheromo ...
to
chrysanthenone Chrysanthenone (C10H14O) is a terpenoid. It can be produced from its isomer verbenone in a photochemical Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemic ...


References

{{DEFAULTSORT:1,2-rearrangement Rearrangement reactions