Weak Derivative
In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (''strong derivative'') for functions not assumed differentiable, but only integrable, i.e., to lie in the L''p'' space L^1( ,b. The method of integration by parts holds that for differentiable functions u and \varphi we have :\begin \int_a^b u(x) \varphi'(x) \, dx & = \Big (x) \varphi(x)\Biga^b  \int_a^b u'(x) \varphi(x) \, dx. \\ pt \end A function ''u''' being the weak derivative of ''u'' is essentially defined by the requirement that this equation must hold for all infinitely differentiable functions ''φ'' vanishing at the boundary points (\varphi(a)=\varphi(b)=0). Definition Let u be a function in the Lebesgue space L^1( ,b. We say that v in L^1( ,b is a weak derivative of u if :\int_a^b u(t)\varphi'(t) \, dt=\int_a^b v(t)\varphi(t) \, dt for ''all'' infinitely differentiable functions \varphi with \varphi(a)=\varphi(b)=0. Generalizing to n dimensions, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just . Nota ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limitrelated structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Generalized Functions
In mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and more contemporary developments in certain directions are closely related to ideas of Mikio Sato, on what he calls algebraic analysis. Important influences on the subject have been the technical requirements of theories of partial differential equations, and group representation theory. Some early history In the mathematics of the nineteenth century, aspects of generalized function theory ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Weyl's Lemma (Laplace Equation)
In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity. Statement of the lemma Let \Omega be an open subset of ndimensional Euclidean space \mathbb^, and let \Delta denote the usual Laplace operator. Weyl's lemma states that if a locally integrable function u \in L_^(\Omega) is a weak solution of Laplace's equation, in the sense that :\int_\Omega u(x) \, \Delta \varphi (x) \, dx = 0 for every smooth test function \varphi \in C_c^\infty(\Omega) with compact support, then (up to redefinition on a set of measure zero) u \in C^(\Omega) is smooth and satisfies \Delta u = 0 pointwise in \Omega. This result implies the interior regularity of harmonic functions in \Omega, but it does not say anything about their regularity on ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Subderivative
In mathematics, the subderivative, subgradient, and subdifferential generalize the derivative to convex functions which are not necessarily differentiable. Subderivatives arise in convex analysis, the study of convex functions, often in connection to convex optimization. Let f:I \to \mathbb be a realvalued convex function defined on an open interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ... of the real line. Such a function need not be differentiable at all points: For example, the absolute value function ''f''(''x'')=, ''x'', is nondifferentiable when ''x''=0. However, as seen in the graph on the right (where ''f(x)'' in blue has nondifferentiable kinks similar to the absolute value function), for any ''x''0 in the domain of the function one can draw a line which goes ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limitrelated structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Differential Equations
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closedform expression for the solutions is not available, solutions may be approximated numerically using computers. The theory of d ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Weak Solution
In mathematics, a weak solution (also called a generalized solution) to an ordinary or partial differential equation is a function for which the derivatives may not all exist but which is nonetheless deemed to satisfy the equation in some precisely defined sense. There are many different definitions of weak solution, appropriate for different classes of equations. One of the most important is based on the notion of distributions. Avoiding the language of distributions, one starts with a differential equation and rewrites it in such a way that no derivatives of the solution of the equation show up (the new form is called the weak formulation, and the solutions to it are called weak solutions). Somewhat surprisingly, a differential equation may have solutions which are not differentiable; and the weak formulation allows one to find such solutions. Weak solutions are important because many differential equations encountered in modelling realworld phenomena do not admit of suffici ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Equivalence Classes
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \,\sim\, on S, the of an element a in S, denoted by is the set \ of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by \,\sim\,, and is denoted by S / \sim. When the set S has some structure (such as a group operation or a topology) and the equivalence relation \,\sim\, is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Exa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Singular Measure
In mathematics, two positive (or signed or complex) measures \mu and \nu defined on a measurable space (\Omega, \Sigma) are called singular if there exist two disjoint measurable sets A, B \in \Sigma whose union is \Omega such that \mu is zero on all measurable subsets of B while \nu is zero on all measurable subsets of A. This is denoted by \mu \perp \nu. A refined form of Lebesgue's decomposition theorem decomposes a singular measure into a singular continuous measure and a discrete measure. See below for examples. Examples on R''n'' As a particular case, a measure defined on the Euclidean space \R^n is called ''singular'', if it is singular with respect to the Lebesgue measure on this space. For example, the Dirac delta function is a singular measure. Example. A discrete measure. The Heaviside step function on the real line, H(x) \ \stackrel \begin 0, & x 0 but \delta_0(U) = 0. Example. A singular continuous measure. The Cantor distribution has a cumulative distribu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cantor Distribution
The Cantor distribution is the probability distribution whose cumulative distribution function is the Cantor function. This distribution has neither a probability density function nor a probability mass function, since although its cumulative distribution function is a continuous function, the distribution is not absolutely continuous with respect to Lebesgue measure, nor does it have any pointmasses. It is thus neither a discrete nor an absolutely continuous probability distribution, nor is it a mixture of these. Rather it is an example of a singular distribution. Its cumulative distribution function is continuous everywhere but horizontal almost everywhere, so is sometimes referred to as the Devil's staircase, although that term has a more general meaning. Characterization The support of the Cantor distribution is the Cantor set, itself the intersection of the (countably infinitely many) sets: : \begin C_0 = & ,1\\ pt C_1 = & ,1/3cup /3,1\\ pt C_2 = & , ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 