Trivial Topology
In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, antidiscrete, concrete or codiscrete. Intuitively, this has the consequence that all points of the space are "lumped together" and cannot be distinguished by topological means. Every indiscrete space is a pseudometric space in which the distance between any two points is zero. Details The trivial topology is the topology with the least possible number of open sets, namely the empty set and the entire space, since the definition of a topology requires these two sets to be open. Despite its simplicity, a space ''X'' with more than one element and the trivial topology lacks a key desirable property: it is not a T0 space. Other properties of an indiscrete space ''X''—many of which are quite unusual—include: * The only closed sets are the empty set and ''X''. * The only possible basis of ''X'' is . ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connected ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Completely Regular
In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff). Tychonoff spaces are named after Andrey Nikolayevich Tychonoff, whose Russian name (Тихонов) is variously rendered as "Tychonov", "Tikhonov", "Tihonov", "Tichonov", etc. who introduced them in 1930 in order to avoid the pathological situation of Hausdorff spaces whose only continuous realvalued functions are constant maps. Definitions A topological space X is called if points can be separated from closed sets via (bounded) continuous realvalued functions. In technical terms this means: for any closed set A \subseteq X and any point x \in X \setminus A, there exists a realvalued continuous function f : X \to \R such t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Secondcountable Space
In topology, a secondcountable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is secondcountable if there exists some countable collection \mathcal = \_^ of open subsets of T such that any open subset of T can be written as a union of elements of some subfamily of \mathcal. A secondcountable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being secondcountable restricts the number of open sets that a space can have. Many "wellbehaved" spaces in mathematics are secondcountable. For example, Euclidean space (R''n'') with its usual topology is secondcountable. Although the usual base of open balls is uncountable, one can restrict to the collection of all open balls with rational radii and whose centers have rational coordinates. This restricted set is countable and still forms a basis. Properties Secondcountabilit ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint nonempty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and nconnected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint nonempty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Pathconnected
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint nonempty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and nconnected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint nonempty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Continuous Function (topology)
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Codomain
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either the codomain or image of a function. A codomain is part of a function if is defined as a triple where is called the ''domain'' of , its ''codomain'', and its ''graph''. The set of all elements of the form , where ranges over the elements of the domain , is called the ''image'' of . The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements in its codomain for which the equation does not have a solution. A codomain is not part of a function if is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class , in which case there is formally no such thing as a triple . With such a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Domain Of A Function
In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. More precisely, given a function f\colon X\to Y, the domain of is . Note that in modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both subsets of \R, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the axis of the graph, as the projection of the graph of the function onto the axis. For a function f\colon X\to Y, the set is called the codomain, and the set of values attained by the function (which is a subset of ) is called its range or image. Any function can be restricted to a subset of its domain. The restriction of f \colon X \to Y to A, where A\subseteq X, is written as \left. f \_A \colon A \to Y. Natural domain If a real function i ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians AlBiruni and Sharaf alDin alTusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Locally Compact
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively compact neighb ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lindelöf Space
In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of '' compactness'', which requires the existence of a ''finite'' subcover. A hereditarily Lindelöf space is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called strongly Lindelöf, but confusingly that terminology is sometimes used with an altogether different meaning. The term ''hereditarily Lindelöf'' is more common and unambiguous. Lindelöf spaces are named after the Finnish mathematician Ernst Leonard Lindelöf. Properties of Lindelöf spaces * Every compact space, and more generally every σcompact space, is Lindelöf. In particular, every countable space is Lindelöf. * A Lindelöf space is compact if and only if it is countably compact. * Every secondcountable space is Lindelöf, but not conversely. For example, there are many compact s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Paracompact
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. Howe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 