Scalar Multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector by a positive real number multiplies the magnitude of the vector—without changing its direction. The term "scalar" itself derives from this usage: a scalar is that which scales vectors. Scalar multiplication is the multiplication of a vector by a scalar (where the product is a vector), and is to be distinguished from inner product of two vectors (where the product is a scalar). Definition In general, if ''K'' is a field and ''V'' is a vector space over ''K'', then scalar multiplication is a function from ''K'' × ''V'' to ''V''. The result of applying this function to ''k'' in ''K'' and v in ''V'' is denoted ''k''v. Properties Scalar multiplication obeys the following rules ''(vector in boldface)'': * Additivity in the scalar: (''c' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Scalar Multiplication By R=3
Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers *Scalar (physics), a physical quantity that can be described by a single element of a number field such as a real number **Lorentz scalar, a quantity in the theory of relativity which is invariant under a Lorentz transformation **Pseudoscalar, a quantity that behaves like a scalar, except that it changes sign under a parity inversion *Scalar (computing), any noncomposite value *Scalar boson, in physics, a boson subatomic particle whose spin equals zero See also *dot product, also known as scalar product *dimensionless quantity, also known as scalar quantity *Inner product space *Scalar field *Scale (music) *Scaler (other) *''Pterophyllum scalare'' (Lichtenstein, 1823), a species of freshwater angelfish * Scala (other) Scala or SCALA may refer to: Automobiles * Renault Scala, multiple automobile models * Škoda Scala, a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Field (algebra)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Geometric
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as standalone spaces, and has been expanded into the theory of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finitedimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Binary Operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary operation ''on a set'' is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups. An operation of arity two that involves several sets is sometimes also called a ''binary operation''. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions. Binary operations are the keystone of most algebraic structures that are studie ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

External (mathematics)
The term external is useful for describing certain algebraic structures. The term comes from the concept of an external binary operation which is a binary operation that draws from some ''external set''. To be more specific, a left external binary operation on ''S'' over ''R'' is a function f : R \times S \rightarrow S and a right external binary operation on ''S'' over ''R'' is a function f : S \times R \rightarrow S where ''S'' is the set the operation is defined on, and ''R'' is the external set (the set the operation is defined ''over''). Generalizations The ''external'' concept is a generalization rather than a specialization, and as such, it is different from many terms in mathematics. A similar but opposite concept is that of an ''internal binary function'' from ''R'' to ''S'', defined as a function f : R \times R \rightarrow S. Internal binary functions are like binary functions, but are a form of specialization, so they only accept a subset of the domains of binary funct ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Multiplication
Multiplication (often denoted by the cross symbol , by the midline dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a ''product''. The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''. Both numbers can be referred to as ''factors''. :a\times b = \underbrace_ For example, 4 multiplied by 3, often written as 3 \times 4 and spoken as "3 times 4", can be calculated by adding 3 copies of 4 together: :3 \times 4 = 4 + 4 + 4 = 12 Here, 3 (the ''multiplier'') and 4 (the ''multiplicand'') are the ''factors'', and 12 is the ''product''. One of the main properties of multiplication is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Multiplication By Juxtaposition
Multiplication (often denoted by the cross symbol , by the midline dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a ''product''. The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''. Both numbers can be referred to as ''factors''. :a\times b = \underbrace_ For example, 4 multiplied by 3, often written as 3 \times 4 and spoken as "3 times 4", can be calculated by adding 3 copies of 4 together: :3 \times 4 = 4 + 4 + 4 = 12 Here, 3 (the ''multiplier'') and 4 (the ''multiplicand'') are the ''factors'', and 12 is the ''product''. One of the main properties of multiplication is th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. The addition of two Natural number, whole numbers results in the total amount or ''summation, sum'' of those values combined. The example in the adjacent image shows a combination of three apples and two apples, making a total of five apples. This observation is equivalent to the Expression (mathematics), mathematical expression (that is, "3 ''plus'' 2 is Equality (mathematics), equal to 5"). Besides counting items, addition can also be defined and executed without referring to concrete objects, using abstractions called numbers instead, such as integers, real numbers and complex numbers. Addition belongs to arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can also be performed on abstract objects su ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Additive Inverse
In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself. The additive inverse of is denoted by unary minus: (see also below). For example, the additive inverse of 7 is −7, because , and the additive inverse of −0.3 is 0.3, because . Similarly, the additive inverse of is which can be simplified to . The additive inverse of is , because . The additive inverse is defined as its inverse element under the binary operation of addition (see also below), which allows a broad generalization to mathematical objects other than numbers. As for any inverse operation, double additive inverse has no net effect: . Common examples For a number (and m ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Zero Vector
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive identity is the identity element in an additive group. It corresponds to the element 0 such that for all x in the group, . Some examples of additive identity include: * The zero vector under vector addition: the vector of length 0 and whose components are all 0. Often denoted as \mathbf or \vec. * The zero function or zero map defined by , under pointwise addition * The empty set under set union * An empty sum or empty coproduct * An initial object in a category (an empty coproduct, and so an identity under coproducts) Absorbing elements An absorbing element in a multiplicative semigroup or semiring generalises the property . Examples include: *The empty set, which is an absorbing element under Cartesian product of sets, since *The zero functi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 