Metrizable
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) such that the topology induced by d is \mathcal. Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff paracompact spaces (and hence normal and Tychonoff) and firstcountable. However, some properties of the metric, such as completeness, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable uniform space, for example, may have a different set of contraction maps than a metric space to which it is homeomorphic. Metrization theorems One of the first widely recognized metrization theorems was . This states that every H ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Paracompact
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. Howeve ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Bing Metrization Theorem
In topology, the Bing metrization theorem, named after R. H. Bing, characterizes when a topological space is metrizable. Formal statement The theorem states that a topological space X is metrizable if and only if it is regular and T0 and has a σdiscrete basis. A family of sets is called σdiscrete when it is a union of countably many discrete collections, where a family \mathcal of subsets of a space X is called discrete, when every point of X has a neighborhood that intersects at most one member of \mathcal. History The theorem was proven by Bing in 1951 and was an independent discovery with the Nagata–Smirnov metrization theorem that was proved independently by both Nagata (1950) and Smirnov (1951). Both theorems are often merged in the BingNagataSmirnov metrization theorem. It is a common tool to prove other metrization theorems, e.g. the Moore metrization theorem – a collectionwise normal, Moore space is metrizable – is a direct consequence. Comparison w ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Regular Space
In topology and related fields of mathematics, a topological space ''X'' is called a regular space if every closed subset ''C'' of ''X'' and a point ''p'' not contained in ''C'' admit nonoverlapping open neighborhoods. Thus ''p'' and ''C'' can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms. Definitions A topological space ''X'' is a regular space if, given any closed set ''F'' and any point ''x'' that does not belong to ''F'', there exists a neighbourhood ''U'' of ''x'' and a neighbourhood ''V'' of ''F'' that are disjoint. Concisely put, it must be possible to separate ''x'' and ''F'' with disjoint neighborhoods. A or is a topological space that is both regular and a Hausdorff space. (A Hausdorff space or T2 space is a topological space in which any two distinct points are separated by neighbourhoods.) It turns out that a space is T3 if a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Neighbourhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open sets ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Product Topology
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more naturalseeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product. Definition Throughout, I will be some nonempty index set and for every index i \in I, let X_i be a topological space. Denote the Cartesian product of the sets X_i by X := \prod X_ := \prod_ X_i and for every index i \in I, denote the ith by \begin p_i :\;&& \prod_ X_j &&\;\to\; & X_i \\ .3ex && \left(x_j\r ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hilbert Cube
In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below). Definition The Hilbert cube is best defined as the topological product of the intervals , 1/''n''for ''n'' = 1, 2, 3, 4, ... That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence \lbrace 1/n \rbrace_. The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval , 1 In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension. Some authors use the term "Hilbert cube" to mean this Cartesian product instead of the product of the ,\frac/math>. If a point in the Hilbert cube ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Homeomorphic
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this descr ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Locally Finite Collection
In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. A collection of subsets of a topological space X is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. Note that the term locally finite has different meanings in other mathematical fields. Examples and properties A finite collection of subsets of a topological space is locally finite. Infinite collections can also be locally finite: for example, the collection of all subsets of \mathbb of the form (n, n+2) for an integer n. A countable collection of subsets need not be locally finite, as shown by the collection of all subsets of \mathbb of the form (n, n) for a natural number ''n''. If a collection of sets is locally finite, the collection of all closures of these sets is also locally finite. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An importa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and \infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Nagata–Smirnov Metrization Theorem
The Nagata–Smirnov metrization theorem in topology characterizes when a topological space is metrizable. The theorem states that a topological space X is metrizable if and only if it is regular, Hausdorff and has a countably locally finite (that is, locally finite) basis. A topological space X is called a regular space if every nonempty closed subset C of X and a point p not contained in C admit nonoverlapping open neighborhoods. A collection in a space X is countably locally finite (or locally finite) if it is the union of a countable family of locally finite collections of subsets of X. Unlike Urysohn's metrization theorem In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) ..., which provides only a sufficient condition for metrizability, this theorem provides both a necess ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 