Local Field
   HOME





Local Field
In mathematics, a field ''K'' is called a non-Archimedean local field if it is complete with respect to a metric induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. In general, a local field is a locally compact topological field with respect to a non-discrete topology. The real numbers R, and the complex numbers C (with their standard topologies) are Archimedean local fields. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at least 250 years, the first examples of non-Archimedean local ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Valuation Ring
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain ''R'' that satisfies any and all of the following equivalent conditions: # ''R'' is a local ring, a principal ideal domain, and not a field. # ''R'' is a valuation ring with a value group isomorphic to the integers under addition. # ''R'' is a local ring, a Dedekind domain, and not a field. # ''R'' is Noetherian and a local domain whose unique maximal ideal is principal, and not a field. # ''R'' is integrally closed, Noetherian, and a local ring with Krull dimension one. # ''R'' is a principal ideal domain with a unique non-zero prime ideal. # ''R'' is a principal ideal domain with a unique irreducible element (up to multiplication by units). # ''R'' is a unique factorization domain with a unique irreducible element (up to multiplication by units). # ''R'' is Noetherian, not a field, and every nonzero fraction ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Of Integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often denoted by O_K or \mathcal O_K. Since any integer belongs to K and is an integral element of K, the ring \mathbb is always a subring of O_K. The ring of integers \mathbb is the simplest possible ring of integers. Namely, \mathbb=O_ where \mathbb is the field of rational numbers. And indeed, in algebraic number theory the elements of \mathbb are often called the "rational integers" because of this. The next simplest example is the ring of Gaussian integers \mathbb /math>, consisting of complex numbers whose real and imaginary parts are integers. It is the ring of integers in the number field \mathbb(i) of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Haar Measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This Measure (mathematics), measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of mathematical analysis, analysis, number theory, group theory, representation theory, mathematical statistics, statistics, probability theory, and ergodic theory. Preliminaries Let (G, \cdot) be a locally compact space, locally compact Hausdorff space, Hausdorff topological group. The Sigma-algebra, \sigma-algebra generated by all open subsets of G is called the Borel algebra. An element of the Borel algebra is called a Borel set. If g is an element of G and S is a subset of G, then we define the left and right Coset, translates of S by ''g'' as follows: * Left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Neighbourhood Basis
In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter \mathcal(x) for a point x in a topological space is the collection of all neighbourhoods of x. Definitions Neighbourhood of a point or set An of a point (or subset) x in a topological space X is any open subset U of X that contains x. A is any subset N \subseteq X that contains open neighbourhood of x; explicitly, N is a neighbourhood of x in X if and only if there exists some open subset U with x \in U \subseteq N. Equivalently, a neighborhood of x is any set that contains x in its topological interior. Importantly, a "neighbourhood" does have to be an open set; those neighbourhoods that also happen to be open sets are known as "open neighbourhoods." Similarly, a neighbourhood that is also a closed (respectively, compact, connected, etc.) set is called a (respectively, , , etc.). There are many other types of neighbourhoods that are used i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Field
In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has no multiple roots in any field extension ''F/k''. * Every irreducible polynomial over ''k'' has non-zero formal derivative. * Every irreducible polynomial over ''k'' is separable. * Every finite extension of ''k'' is separable. * Every algebraic extension of ''k'' is separable. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , every element of ''k'' is a ''p''th power. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , the Frobenius endomorphism is an automorphism of ''k''. * The separable closure of ''k'' is algebraically closed. * Every reduced commutative ''k''-algebra ''A'' is a separable algebra; i.e., A \otimes_k F is reduced for every field extension ''F''/''k''. (see below) Otherwise, ''k'' is called imperfect. In particular, all fields of characteristic zero and all finite fields ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. The set of maximal ideals of a unital commutative ring ''R'', typically equipped with the Zariski topology, is known as the maximal spectrum of ''R'' and is variously denoted m-Spec ''R'', Specm ''R'', MaxSpec ''R'', or Spm ''R''. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one-sided maximal ideal ''A'' is not necessarily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, that is, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind the rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. These operations make the field into an abelian group under addition, and they make the nonzero elements of the field into another abelian group under multiplicat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponentiation
In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product (mathematics), product of multiplying bases: b^n = \underbrace_.In particular, b^1=b. The exponent is usually shown as a superscript to the right of the base as or in computer code as b^n. This binary operation is often read as " to the power "; it may also be referred to as " raised to the th power", "the th power of ", or, most briefly, " to the ". The above definition of b^n immediately implies several properties, in particular the multiplication rule:There are three common notations for multiplication: x\times y is most commonly used for explicit numbers and at a very elementary level; xy is most common when variable (mathematics), variables are used; x\cdot y is used for emphasizing that one ta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Formal Laurent Series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.). A formal power series is a special kind of formal series, of the form \sum_^\infty a_nx^n=a_0+a_1x+ a_2x^2+\cdots, where the a_n, called ''coefficients'', are numbers or, more generally, elements of some ring, and the x^n are formal powers of the symbol x that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of terms is allowed to be infinite, and differ from usual power series by the absence of convergence requirements, which implies that a power series may not represent a function of its variable. Formal power series are in one to one correspondence with their sequences of coefficients, but the two concepts must not be confused, sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]