Linear Logic
Linear logic is a substructural logic proposed by JeanYves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resourceboundedness, duality, and interaction. Linear logic lends itself to many different presentations, explanations, and intuitions. Prooftheoretically, it derives from an analysis of classical sequent calculus in which uses of (the structural rules) contraction and weakening are carefully controlled. Operationally, this means that logical deduction is no longer merely about an everexpanding collection of persistent "truths", ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Substructural Logic
In logic, a substructural logic is a logic lacking one of the usual structural rules (e.g. of classical and intuitionistic logic), such as weakening, contraction, exchange or associativity. Two of the more significant substructural logics are relevance logic and linear logic. Examples In a sequent calculus, one writes each line of a proof as :\Gamma\vdash\Sigma. Here the structural rules are rules for rewriting the LHS of the sequent, denoted Î“, initially conceived of as a string (sequence) of propositions. The standard interpretation of this string is as conjunction: we expect to read :\mathcal A,\mathcal B \vdash\mathcal C as the sequent notation for :(''A'' and ''B'') implies ''C''. Here we are taking the RHS Î£ to be a single proposition ''C'' (which is the intuitionistic style of sequent); but everything applies equally to the general case, since all the manipulations are taking place to the left of the turnstile symbol \vdash. Since conjunction is a commutativ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cartesian Closed Categories
In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal category, closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum computation, quantum and classical computation. Etymology Named after (1596â€“1650), French philosopher, mathematician, and scientist, whose formulation of analytic geometry gave rise to the concept of Cartesian product, which was later generalized to the notion of categorical product. Definition The category ''C'' is called Cartesian closed if and only if it satisfies the following three properties: * It has a terminal object. * Any two objects ''X'' and ''Y'' of ''C'' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Sequent Calculus
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon nonlogical axioms. In that case, sequents signify conditional theorems in a firstorder language rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing linebyline logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Logical Consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical conse ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Turnstile (symbol)
In mathematical logic and computer science the symbol \vdash has taken the name turnstile because of its resemblance to a typical turnstile if viewed from above. It is also referred to as tee and is often read as "yields", "proves", "satisfies" or "entails". Interpretations The turnstile represents a binary relation. It has several different interpretations in different contexts: * In epistemology, Per MartinLÃ¶f (1996) analyzes the \vdash symbol thus: "... e combination of Frege's , judgement stroke and , content stroke €” came to be called the assertion sign." Frege's notation for a judgement of some content ::\vdash A :can then be read ::''I know is true''. :In the same vein, a conditional assertion ::P \vdash Q :can be read as: ::''From , I know that '' * In metalogic, the study of formal languages; the turnstile represents syntactic consequence (or "derivability"). This is to say, that it shows that one string can be derived from another in a single step, acc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lollipop
A lollipop is a type of sugar candy usually consisting of hard candy mounted on a stick and intended for sucking or licking. Different informal terms are used in different places, including lolly, sucker, stickypop, etc. Lollipops are available in many flavors and shapes. Types Lollipops are available in a number of colors and flavors, particularly fruit flavors. With numerous companies producing lollipops, the candy now comes in dozens of flavors and many different shapes. Lollipops can range from very small candies bought in bulk and given away as a courtesy at banks, barbershops, and other locations, to very large treats made from candy canes twisted into a spiral shape. Most lollipops are eaten at room temperature, but " ice lollipops", "ice lollies", or "popsicles" are frozen waterbased lollipops. Similar confections on a stick made of ice cream, often with a flavored coating, are usually not called by this name. Some lollipops contain fillings, such as bubble gum ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Involution (mathematics)
In mathematics, an involution, involutory function, or selfinverse function is a function that is its own inverse, : for all in the domain of . Equivalently, applying twice produces the original value. General properties Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x \mapsto x), reciprocation (x \mapsto 1/x), and complex conjugation (z \mapsto \bar z) in arithmetic; reflection, halfturn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher. The composition of two involutions ''f'' and ''g'' is an involution if and only if they commute: . Involutions on finite sets The number of involutions, including the identity involution, on a set with elements is given by a recurrence relation found by Heinrich August Rothe in 1800: :a_0 = a_1 = 1 and a_n = a_ + ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Logical Disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S , assuming that R abbreviates "it is raining" and S abbreviates "it is snowing". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous nonclassical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Logical Conjunction
In logic, mathematics and linguistics, And (\wedge) is the truthfunctional operator of logical conjunction; the ''and'' of a set of operands is true if and only if ''all'' of its operands are true. The logical connective that represents this operator is typically written as \wedge or . A \land B is true if and only if A is true and B is true, otherwise it is false. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English "and". * In programming languages, the shortcircuit and control structure. * In set theory, intersection. * In lattice theory, logical conjunction ( greatest lower bound). * In predicate logic, universal quantification. Notation And is usually denoted by an infix operator: in mathematics and logic, it is denoted by \wedge, or ; in electronics, ; and in programming languages, &, &&, or and. In Jan ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Logical Connective
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective \lor can be used to join the two atomic formulas P and Q, rendering the complex formula P \lor Q . Common connectives include negation, disjunction, conjunction, and implication. In standard systems of classical logic, these connectives are interpreted as truth functions, though they receive a variety of alternative interpretations in nonclassical logics. Their classical interpretations are similar to the meanings of natural language expressions such as English "not", "or", "and", and "if", but not identical. Discrepancies between natural language connectives and those of classical logic have motivated nonclassical approaches to natural language meaning as well as approaches which pair a classical compositional semantics wi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Atomic Formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest wellformed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives. The precise form of atomic formulas depends on the logic under consideration; for propositional logic, for example, a propositional variable is often more briefly referred to as an "atomic formula", but, more precisely, a propositional variable is not an atomic formula but a formal expression that denotes an atomic formula. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a term. In model theory, atomic formulas are merely strings of symbols with a given signature, which may or may not be satisfiable with respect to a given mo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Backusâ€“Naur Form
In computer science, Backusâ€“Naur form () or Backus normal form (BNF) is a metasyntax notation for contextfree grammars, often used to describe the syntax of languages used in computing, such as computer programming languages, document formats, instruction sets and communication protocols. It is applied wherever exact descriptions of languages are needed: for instance, in official language specifications, in manuals, and in textbooks on programming language theory. Many extensions and variants of the original Backusâ€“Naur notation are used; some are exactly defined, including extended Backusâ€“Naur form (EBNF) and augmented Backusâ€“Naur form (ABNF). Overview A BNF specification is a set of derivation rules, written as ::= __expression__ where: * is a ''nonterminal'' (variable) and the __expression__ consists of one or more sequences of either terminal or nonterminal symbols; * means that the symbol on the left must be replaced with the expression on the right. * mor ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 