Graph Isomorphism
In graph theory, an isomorphism of graphs ''G'' and ''H'' is a bijection between the vertex sets of ''G'' and ''H'' : f \colon V(G) \to V(H) such that any two vertices ''u'' and ''v'' of ''G'' are adjacent in ''G'' if and only if f(u) and f(v) are adjacent in ''H''. This kind of bijection is commonly described as "edgepreserving bijection", in accordance with the general notion of isomorphism being a structurepreserving bijection. If an isomorphism exists between two graphs, then the graphs are called isomorphic and denoted as G\simeq H. In the case when the bijection is a mapping of a graph onto itself, i.e., when ''G'' and ''H'' are one and the same graph, the bijection is called an automorphism of ''G''. If a graph is finite, we can prove it to be bijective by showing it is oneone/onto; no need to show both. Graph isomorphism is an equivalence relation on graphs and as such it partitions the class of all graphs into equivalence classes. A set of graphs isomorphic to each ot ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lecture Notes In Computer Science
''Lecture Notes in Computer Science'' is a series of computer science books published by Springer Science+Business Media since 1973. Overview The series contains proceedings, postproceedings, monographs, and Festschrifts. In addition, tutorials, stateoftheart surveys, and "hot topics" are increasingly being included. The series is indexed by DBLP. See also *''Monographiae Biologicae'', another monograph series published by Springer Science+Business Media *''Lecture Notes in Physics'' *''Lecture Notes in Mathematics'' *''Electronic Workshops in Computing ''Electronic Workshops in Computing'' (eWiC) is a publication series by the British Computer Society. The series provides free online access for conferences and workshops in the area of computing. For example, the EVA London Conference proceeding ...'', published by the British Computer Society References External links * Publications established in 1973 Computer science books Series of nonfiction books Springer ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Complete Graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, had already appeared in the 13th century, in the work of Ramon Llull. Such a drawing is sometimes referred to as a mystic rose. Properties The complete graph on vertices is denoted by . Some sources claim that the letter in this notation stands for the German word , but the German name for a complete graph, , does not contain the letter , and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory. has edges ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Line Graph
In the mathematical discipline of graph theory, the line graph of an undirected graph is another graph that represents the adjacencies between edges of . is constructed in the following way: for each edge in , make a vertex in ; for every two edges in that have a vertex in common, make an edge between their corresponding vertices in . The name line graph comes from a paper by although both and used the construction before this. Other terms used for the line graph include the covering graph, the derivative, the edgetovertex dual, the conjugate, the representative graph, and the θobrazom, as well as the edge graph, the interchange graph, the adjoint graph, and the derived graph., p. 71. proved that with one exceptional case the structure of a connected graph can be recovered completely from its line graph. Many other properties of line graphs follow by translating the properties of the underlying graph from vertices into edges, and by Whitney's theorem the same t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hassler Whitney
Hassler Whitney (March 23, 1907 – May 10, 1989) was an American mathematician. He was one of the founders of singularity theory, and did foundational work in manifolds, embeddings, immersions, characteristic classes, and geometric integration theory. Biography Life Hassler Whitney was born on March 23, 1907, in New York City, where his father Edward Baldwin Whitney was the First District New York Supreme Court judge. His mother, A. Josepha Newcomb Whitney, was an artist and active in politics. He was the paternal nephew of Connecticut Governor and Chief Justice Simeon Eben Baldwin, his paternal grandfather was William Dwight Whitney, professor of Ancient Languages at Yale University, linguist and Sanskrit scholar. Whitney was the greatgrandson of Connecticut Governor and US Senator Roger Sherman Baldwin, and the greatgreatgrandson of American founding father Roger Sherman. His maternal grandparents were astronomer and mathematician Simon Newcomb (18351909), a Steeves desc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Whitneys Theorem Exception
The Whitney Awards are awards given annually for novels by LDS authors. Established in 2007, they are named after Orson F. Whitney, a prominent early member of the LDS Church. There are several categories for which novels may be nominated. The Whitney Awards are a semiindependent nonprofit organization affiliated with the LDStorymakers, a guild for LDS authors. Categories Due to the limited number of titles released by LDS authors, several of the genre awards have been combined (such as romance and women's fiction). , there are eight genre categories: Adult *Romance * Mystery/Suspense *Speculative *Historical *General Youth * Youth General *Youth Speculative * Middle Grade There are also two special awards: *Best Novel by a New Author *Novel of the Year The Whitney Committee states that it is unlikely that other areas of LDS art—such as music, poetry, or nonfiction books—will be added to the categories. Process To be eligible, a novel must be written by an LDS ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic intege ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cycle (graph Theory)
In graph theory, a cycle in a graph is a nonempty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a nonempty directed trail in which only the first and last vertices are equal. A graph without cycles is called an ''acyclic graph''. A directed graph without directed cycles is called a ''directed acyclic graph''. A connected graph without cycles is called a ''tree''. Definitions Circuit and cycle * A circuit is a nonempty trail in which the first and last vertices are equal (''closed trail''). : Let be a graph. A circuit is a nonempty trail with a vertex sequence . * A cycle or simple circuit is a circuit in which only the first and last vertices are equal. Directed circuit and directed cycle * A directed circuit is a nonempty directed trail in which the first and last vertices are equal (''closed directed trail''). : Let be a directed graph. A directed circuit is a nonempty directed trail with a vertex sequence ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Graph Labeling
In the mathematical discipline of graph theory, a graph labelling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. Formally, given a graph , a vertex labelling is a function of to a set of labels; a graph with such a function defined is called a vertexlabeled graph. Likewise, an edge labelling is a function of to a set of labels. In this case, the graph is called an edgelabeled graph. When the edge labels are members of an ordered set (e.g., the real numbers), it may be called a weighted graph. When used without qualification, the term labeled graph generally refers to a vertexlabeled graph with all labels distinct. Such a graph may equivalently be labeled by the consecutive integers , where is the number of vertices in the graph. For many applications, the edges or vertices are given labels that are meaningful in the associated domain. For example, the edges may be assigned weights representing the "cost" of tra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Graph (data Structure)
In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of ''vertices'' (also called ''nodes'' or ''points''), together with a set of unordered pairs of these vertices for an undirected graph or a set of ordered pairs for a directed graph. These pairs are known as ''edges'' (also called ''links'' or ''lines''), and for a directed graph are also known as ''edges'' but also sometimes ''arrows'' or ''arcs''. The vertices may be part of the graph structure, or may be external entities represented by integer indices or references. A graph data structure may also associate to each edge some ''edge value'', such as a symbolic label or a numeric attribute (cost, capacity, length, etc.). Operations The basic operations provided by a graph data structure ''G'' usually include:See, e.g. , Secti ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Graph Properties
In graph theory, a graph property or graph invariant is a property of graphs that depends only on the abstract structure, not on graph representations such as particular labellings or drawings of the graph.. Definitions While graph drawing and graph representation are valid topics in graph theory, in order to focus only on the abstract structure of graphs, a graph property is defined to be a property preserved under all possible isomorphisms of a graph. In other words, it is a property of the graph itself, not of a specific drawing or representation of the graph. Informally, the term "graph invariant" is used for properties expressed quantitatively, while "property" usually refers to descriptive characterizations of graphs. For example, the statement "graph does not have vertices of degree 1" is a "property" while "the number of vertices of degree 1 in a graph" is an "invariant". More formally, a graph property is a class of graphs with the property that any two isomorphic gra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Arc (graph Theory)
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pair where * ''V'' is a set whose elements are called '' vertices'', ''nodes'', or ''points''; * ''A'' is a set of ordered pairs of vertices, called ''arcs'', ''directed edges'' (sometimes simply ''edges'' with the corresponding set named ''E'' instead of ''A''), ''arrows'', or ''directed lines''. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called ''edges'', ''links'' or ''lines''. The aforementioned definition does not allow a directed graph to have multiple arrows with the same source and target nodes, but some authors consider a broader definition that allows directed graphs to have such multiple arcs (namely, they allow the arc set to be a mu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 