Coproduct
   HOME
*





Coproduct
In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products. Definition Let C be a category and let X_1 and X_2 be objects of C. An object is called the coproduct of X_1 and X_2, written X_1 \sqcup X_2, or X_1 \oplus X_2, or sometimes simply X_1 + X_2, if there exist morphisms i_1 : X_1 \to X_1 \sqcup X_2 and i_2 : X_2 \to X_1 \sqcup X_2 satisfying the following universal property: for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, we define the sum (a, b) + (c, d) to be (a + c, b + d); in other words addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. We can also form direct sums with any finite number of summands, for example A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Rings
In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper. As a concrete category The category Ring is a concrete category meaning that the objects are sets with additional structure (addition and multiplication) and the morphisms are functions that preserve this structure. There is a natural forgetful functor :''U'' : Ring → Set for the category of rings to the category of sets which sends each ring to its underlying set (thus "forgetting" the operations of addition and multiplication). This functor has a left adjoint :''F'' : Set → Ring which assigns to each set ''X'' the free ring generated by ''X''. One can also view the category of rings as a concrete category over Ab (the category of abelian groups) or over Mon (the category of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disjoint Union
In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A (that is, each element of A belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union. In category theory, the disjoint union is the coproduct of the category of sets, and thus defined up to a bijection. In this context, the notation \coprod_ A_i is often used. The disjoint union of two sets A and B is written with infix notation as A \sqcup B. Some authors use the alternative notation A \uplus B or A \operatorname B (along with the corresponding \biguplus_ A_i or \operatorname_ A_i). A standard way for building the disjoint union is to define A as the set of ordered pairs (x, i) such that x \in A_i, and the injection A_i \to A as x \mapsto (x, i). Example Consider the sets A_0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Category Of Commutative Algebras
In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper. As a concrete category The category Ring is a concrete category meaning that the objects are sets with additional structure (addition and multiplication) and the morphisms are functions that preserve this structure. There is a natural forgetful functor :''U'' : Ring → Set for the category of rings to the category of sets which sends each ring to its underlying set (thus "forgetting" the operations of addition and multiplication). This functor has a left adjoint :''F'' : Set → Ring which assigns to each set ''X'' the free ring generated by ''X''. One can also view the category of rings as a concrete category over Ab (the category of abelian groups) or over Mon (the category of mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Product Of Algebras
In mathematics, the tensor product of two algebras over a commutative ring ''R'' is also an ''R''-algebra. This gives the tensor product of algebras. When the ring is a field, the most common application of such products is to describe the product of algebra representations. Definition Let ''R'' be a commutative ring and let ''A'' and ''B'' be ''R''-algebras. Since ''A'' and ''B'' may both be regarded as ''R''-modules, their tensor product :A \otimes_R B is also an ''R''-module. The tensor product can be given the structure of a ring by defining the product on elements of the form by :(a_1\otimes b_1)(a_2\otimes b_2) = a_1 a_2\otimes b_1b_2 and then extending by linearity to all of . This ring is an ''R''-algebra, associative and unital with identity element given by . where 1''A'' and 1''B'' are the identity elements of ''A'' and ''B''. If ''A'' and ''B'' are commutative, then the tensor product is commutative as well. The tensor product turns the category of ''R''-algebras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Product (category Theory)
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects. Definition Product of two objects Fix a category C. Let X_1 and X_2 be objects of C. A product of X_1 and X_2 is an object X, typically denoted X_1 \times X_2, equipped with a pair of morphisms \pi_1 : X \to X_1, \pi_2 : X \to X_2 satisfying the following universal property: * For every object Y and every pair of morphisms f_1 : Y \to X_1, f_2 : Y \to X_2, there exists a unique morphism f : Y \to X_1 \times X_2 such that the following diagram commutes: *: Whether a product exists may depend on C or on X_1 and X_2. If it does exist, it is unique up to canonical isomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Sets
In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition of morphisms is the composition of functions. Many other categories (such as the category of groups, with group homomorphisms as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind. Properties of the category of sets The axioms of a category are satisfied by Set because composition of functions is associative, and because every set ''X'' has an identity function id''X'' : ''X'' → ''X'' which serves as identity element for function composition. The epimorphisms in Set are the surjective maps, the monomorphisms are the injective maps, and the isomorphisms are the bijective maps. The empty set serves as the initial object in Set with empty functions as morphisms. Every s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disjoint Union (topology)
In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the disjoint union the given spaces are considered as part of a single new space where each looks as it would alone and they are isolated from each other. The name ''coproduct'' originates from the fact that the disjoint union is the categorical dual of the product space construction. Definition Let be a family of topological spaces indexed by ''I''. Let :X = \coprod_i X_i be the disjoint union of the underlying sets. For each ''i'' in ''I'', let :\varphi_i : X_i \to X\, be the canonical injection (defined by \varphi_i(x)=(x,i)). The disjoint union topology on ''X'' is defined as the finest topology on ''X'' for which all the canonical injec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Free Product
In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from ''G'' and ''H'' into a group ''K'' factor uniquely through a homomorphism from to ''K''. Unless one of the groups ''G'' and ''H'' is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group (the universal group with a given set of generators). The free product is the coproduct in the category of groups. That is, the free product plays the same role in group theory that disjoint union plays in set theory, or that the direct sum plays in module theory. Even if the groups are commutative, their free product is not, unless one of the two groups is the trivial grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Groups
In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories There are two forgetful functors from Grp, M: Grp → Mon from groups to monoids and U: Grp → Set from groups to sets. M has two adjoints: one right, I: Mon→Grp, and one left, K: Mon→Grp. I: Mon→Grp is the functor sending every monoid to the submonoid of invertible elements and K: Mon→Grp the functor sending every monoid to the Grothendieck group of that monoid. The forgetful functor U: Grp → Set has a left adjoint given by the composite KF: Set→Mon→Grp, where F is the free functor; this functor assigns to every set ''S'' the free group on ''S.'' Categorical properties The monomorphisms in Grp are precisely the injective homomorphisms, the epimorphisms are precisely the surjective homomorphisms, and the isomorphisms are precise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Spaces
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]