Cocountable Topology
   HOME
*





Cocountable Topology
The cocountable topology or countable complement topology on any set ''X'' consists of the empty set and all cocountable subsets of ''X'', that is all sets whose complement in ''X'' is countable. It follows that the only closed subsets are ''X'' and the countable subsets of ''X''. Symbolically, one writes the topology as \mathcal = \. Every set ''X'' with the cocountable topology is Lindelöf, since every nonempty open set omits only countably many points of ''X''. It is also T1, as all singletons are closed. If ''X'' is an uncountable set then any two nonempty open sets intersect, hence the space is not Hausdorff. However, in the cocountable topology all convergent sequences are eventually constant, so limits are unique. Since compact sets in ''X'' are finite subsets, all compact subsets are closed, another condition usually related to Hausdorff separation axiom. The cocountable topology on a countable set is the discrete topology. The cocountable topology on an uncountable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE