Total Subset
In mathematics, more specifically in functional analysis, a subset T of a topological vector space X is said to be a total subset of X if the linear span of T is a dense subset of X. This condition arises frequently in many theorems of functional analysis. Examples Unbounded selfadjoint operator In mathematics, a selfadjoint operator on an infinitedimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finitedimensional case) is a linear map ''A'' (from ''V'' to its ...s on Hilbert spaces are defined on total subsets. See also * * * References * {{Functional analysis Functional analysis Topological vector spaces ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limitrelated structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the I ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Topological Vector Space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other wellknown examples of TVSs. Many topological vector spaces are spaces of functions, or linear operators acting o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Linear Span
In mathematics, the linear span (also called the linear hull or just span) of a set of vectors (from a vector space), denoted , pp. 2930, §§ 2.5, 2.8 is defined as the set of all linear combinations of the vectors in . It can be characterized either as the intersection of all linear subspaces that contain , or as the smallest subspace containing . The linear span of a set of vectors is therefore a vector space itself. Spans can be generalized to matroids and modules. To express that a vector space is a linear span of a subset , one commonly uses the following phrases—either: spans , is a spanning set of , is spanned/generated by , or is a generator or generator set of . Definition Given a vector space over a field , the span of a set of vectors (not necessarily infinite) is defined to be the intersection of all subspaces of that contain . is referred to as the subspace ''spanned by'' , or by the vectors in . Conversely, is called a ''spanning set'' of , and ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Dense Set
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, A is dense in X if the smallest closed subset of X containing A is X itself. The of a topological space X is the least cardinality of a dense subset of X. Definition A subset A of a topological space X is said to be a of X if any of the following equivalent conditions are satisfied: The smallest closed subset of X containing A is X itself. The closure of A in X is equal to X. That is, \operatorname_X A = X. The interior of the complement of A is empty. That is, \operatorname_X (X \setminus A) = \varnothing. Every point in X either be ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Selfadjoint Operator
In mathematics, a selfadjoint operator on an infinitedimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finitedimensional case) is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. If ''V'' is finitedimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of ''A'' is a Hermitian matrix, i.e., equal to its conjugate transpose ''A''. By the finitedimensional spectral theorem, ''V'' has an orthonormal basis such that the matrix of ''A'' relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Selfadjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as p ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finitedimensional) Euclidean vector spaces to spaces that may be infinitedimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that u ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limitrelated structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the I ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 