Quotient Category
In mathematics, a quotient category is a category obtained from another one by identifying sets of morphisms. Formally, it is a quotient object in the category of (locally small) categories, analogous to a quotient group or quotient space, but in the categorical setting. Definition Let ''C'' be a category. A ''congruence relation'' ''R'' on ''C'' is given by: for each pair of objects ''X'', ''Y'' in ''C'', an equivalence relation ''R''''X'',''Y'' on Hom(''X'',''Y''), such that the equivalence relations respect composition of morphisms. That is, if :f_1,f_2 : X \to Y\, are related in Hom(''X'', ''Y'') and :g_1,g_2 : Y \to Z\, are related in Hom(''Y'', ''Z''), then ''g''1''f''1 and ''g''2''f''2 are related in Hom(''X'', ''Z''). Given a congruence relation ''R'' on ''C'' we can define the quotient category ''C''/''R'' as the category whose objects are those of ''C'' and whose morphisms are equivalence classes of morphisms in ''C''. That is, :\mathrm_(X,Y) = \mathrm_(X,Y)/R_. Comp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Abelian Category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are na ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 00725285) is a series of graduatelevel textbooks in mathematics published by SpringerVerlag. The books in this series, like the other SpringerVerlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Categories For The Working Mathematician
''Categories for the Working Mathematician'' (''CWM'') is a textbook in category theory written by American mathematician Saunders Mac Lane, who cofounded the subject together with Samuel Eilenberg. It was first published in 1971, and is based on his lectures on the subject given at the University of Chicago, the Australian National University, Bowdoin College, and Tulane University. It is widely regarded as the premier introduction to the subject. Contents The book has twelve chapters, which are: :Chapter I. Categories, Functors, and Natural Transformations. :Chapter II. Constructions on Categories. :Chapter III. Universals and Limits. :Chapter IV. Adjoints. :Chapter V. Limits. :Chapter VI. Monads and Algebras. :Chapter VII. Monoids. :Chapter VIII. Abelian Categories. :Chapter IX. Special Limits. :Chapter X. Kan Extensions. :Chapter XI. Symmetry and Braiding in Monoidal Categories :Chapter XII. Structures in Categories. Chapters XI and XII were added in the 1998 second edi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Quotient Of An Abelian Category
In mathematics, the quotient (also called Serre quotient or Gabriel quotient) of an abelian category \mathcal by a Serre subcategory \mathcal is the abelian category \mathcal/\mathcal which, intuitively, is obtained from \mathcal by ignoring (i.e. treating as zero) all objects from \mathcal. There is a canonical exact functor Q \colon \mathcal \to \mathcal/\mathcal whose kernel is \mathcal B, and \mathcal/\mathcal is in a certain sense the most general abelian category with this property. Forming Serre quotients of abelian categories is thus formally akin to forming quotients of groups. Serre quotients are somewhat similar to quotient categories, the difference being that with Serre quotients all involved categories are abelian and all functors are exact. Serre quotients also often have the character of localizations of categories, especially if the Serre subcategory is localizing. Definition Formally, \mathcal A/\mathcal B is the category whose objects are those of \mathca ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Localization Of A Category
In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category. Introduction and motivation A category ''C'' consists of objects and morphisms between these objects. The morphisms reflect relations between the objects. In many situations, it is meaningful to replace ''C'' by another category ''C in which certain morphisms are forced to be isomorphisms. This process is called localization. For example, in the category of ''R''modules (for some fixed commutative ring ''R'') the multiplication by a fixed element ''r'' of '' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Quotient Ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring and a twosided ideal in , a new ring, the quotient ring , is constructed, whose elements are the cosets of in subject to special and operations. (Only the fraction slash "/" is used in quotient ring notation, not a horizontal fraction bar.) Quotient rings are distinct from the socalled "quotient field", or field of fractions, of an integral domain as well as from the more general "rings of quotients" obtained by localization. Formal quotient ring construction Given a ring and a twosided ideal in , we may define an equivalence relation on as follows: : if and only if is in . Using the ideal properties, it is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be nonnumerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Additive Category
In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts. Definition A category C is preadditive if all its homsets are abelian groups and composition of morphisms is bilinear; in other words, C is enriched over the monoidal category of abelian groups. In a preadditive category, every finitary product (including the empty product, i.e., a final object) is necessarily a coproduct (or initial object in the case of an empty diagram), and hence a biproduct, and conversely every finitary coproduct is necessarily a product (this is a consequence of the definition, not a part of it). Thus an additive category is equivalently described as a preadditive category admitting all finitary products, or a preadditive category admitting all finitary coproducts. Another, yet equivalent, way to define an additive category is a category (not assumed to be preadditive) that has a zero object, finite coprodu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Homotopy Class
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second p ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 