Linearity Of Differentiation
In calculus, the derivative of any linear combination of functions equals the same linear combination of the derivatives of the functions; this property is known as linearity of differentiation, the rule of linearity, or the superposition rule for differentiation. It is a fundamental property of the derivative that encapsulates in a single rule two simpler rules of differentiation, the sum rule (the derivative of the sum of two functions is the sum of the derivatives) and the constant factor rule (the derivative of a constant multiple of a function is the same constant multiple of the derivative). Thus it can be said that differentiation is linear, or the differential operator is a linear operator. Statement and derivation Let and be functions, with and constants. Now consider :\frac ( \alpha \cdot f(x) + \beta \cdot g(x) ). By the sum rule in differentiation, this is :\frac ( \alpha \cdot f(x) ) + \frac (\beta \cdot g(x)), and by the constant factor rule in differentiat ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. It has two major branches, differential calculus and integral calculus; the former concerns instantaneous Rate of change (mathematics), rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence (mathematics), convergence of infinite sequences and Series (mathematics), infinite series to a welldefined limit (mathematics), limit. Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Later work, including (ε, δ)definition of limit, codify ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the derivativ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians AlBiruni and Sharaf alDin alTusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Superposition Principle
The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input ''A'' produces response ''X'' and input ''B'' produces response ''Y'' then input (''A'' + ''B'') produces response (''X'' + ''Y''). A function F(x) that satisfies the superposition principle is called a linear function. Superposition can be defined by two simpler properties: additivity F(x_1+x_2)=F(x_1)+F(x_2) \, and homogeneity F(a x)=a F(x) \, for scalar . This principle has many applications in physics and engineering because many physical systems can be modeled as linear systems. For example, a beam can be modeled as a linear system where the input stimulus is the load on the beam and the output response is the deflection of the beam. The importance of linear systems is that they are easier to analyze mathematically; the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Sum Rule In Differentiation
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus. Elementary rules of differentiation Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined — including the case of complex numbers (C). Constant term rule For any value of c, where c \in \mathbb, if f(x) is the constant function given by f(x) = c, then \frac = 0. Proof Let c \in \mathbb and f(x) = c. By the definition of the derivative, :\begin f'(x) &= \lim_\frac \\ &= \lim_ \frac \\ &= \lim_ \frac \\ &= \lim_ 0 \\ &= 0 \end This shows that the derivative of any constant function is 0. Differentiation is linear For any functions f and g and any real numbers a and b, the derivative of the function h(x) = af(x) + bg(x) with respect to x is: h'(x) = a f'(x) + b g'(x). In Leibniz's notation this is written as: \frac = a\frac +b\fra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Constant Factor Rule In Differentiation
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus. Elementary rules of differentiation Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined — including the case of complex numbers (C). Constant term rule For any value of c, where c \in \mathbb, if f(x) is the constant function given by f(x) = c, then \frac = 0. Proof Let c \in \mathbb and f(x) = c. By the definition of the derivative, :\begin f'(x) &= \lim_\frac \\ &= \lim_ \frac \\ &= \lim_ \frac \\ &= \lim_ 0 \\ &= 0 \end This shows that the derivative of any constant function is 0. Differentiation is linear For any functions f and g and any real numbers a and b, the derivative of the function h(x) = af(x) + bg(x) with respect to x is: h'(x) = a f'(x) + b g'(x). In Leibniz's notation this is written as: \frac = a\frac +b\fra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Undergraduate Texts In Mathematics
Undergraduate Texts in Mathematics (UTM) (ISSN 01726056) is a series of undergraduatelevel textbooks in mathematics published by SpringerVerlag. The books in this series, like the other SpringerVerlag mathematics series, are small yellow books of a standard size. The books in this series tend to be written at a more elementary level than the similar Graduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. There is no SpringerVerlag numbering of the books like in the Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) (ISSN 00725285) is a series of graduatelevel textbooks in mathematics published by SpringerVerlag. The books in this series, like the other SpringerVerlag mathematics series, are yellow books of a standard s ... series. The books are numbered here by year of publication. List of books # # # # # # # # # # # # # # # # # # # # # # # # # ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Linear Map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of module (mathematics), modules over a ring (mathematics), ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are Real number, real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Some ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Differential Operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higherorder function in computer science). This article considers mainly linear differential operators, which are the most common type. However, nonlinear differential operators also exist, such as the Schwarzian derivative. Definition An orderm linear differential operator is a map A from a function space \mathcal_1 to another function space \mathcal_2 that can be written as: A = \sum_a_\alpha(x) D^\alpha\ , where \alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n) is a multiindex of nonnegative integers, , \alpha, = \alpha_1 + \alpha_2 + \cdots + \alpha_n, and for each \alpha, a_\alpha(x) is a function on some open domain in ''n''dimensional space. The operator D^\alpha is interpreted as D^\alp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Bracket (mathematics)
In mathematics, brackets of various typographical forms, such as parentheses ( ), square brackets nbsp; braces and angle brackets ⟨ ⟩, are frequently used in mathematical notation. Generally, such bracketing denotes some form of grouping: in evaluating an expression containing a bracketed subexpression, the operators in the subexpression take precedence over those surrounding it. Sometimes, for the clarity of reading, different kinds of brackets are used to express the same meaning of precedence in a single expression with deep nesting of subexpressions. Historically, other notations, such as the vinculum, were similarly used for grouping. In presentday use, these notations all have specific meanings. The earliest use of brackets to indicate aggregation (i.e. grouping) was suggested in 1608 by Christopher Clavius, and in 1629 by Albert Girard. Symbols for representing angle brackets A variety of different symbols are used to represent angle brackets. In email ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Domain Of A Function
In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. More precisely, given a function f\colon X\to Y, the domain of is . Note that in modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both subsets of \R, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the axis of the graph, as the projection of the graph of the function onto the axis. For a function f\colon X\to Y, the set is called the codomain, and the set of values attained by the function (which is a subset of ) is called its range or image. Any function can be restricted to a subset of its domain. The restriction of f \colon X \to Y to A, where A\subseteq X, is written as \left. f \_A \colon A \to Y. Natural domain If a real function is giv ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 