Legendre Polynomials
In physical science and mathematics, Legendre polynomials (named after AdrienMarie Legendre, who discovered them in 1782) are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions. Definition by construction as an orthogonal system In this approach, the polynomials are defined as an orthogonal system with respect to the weight function w(x) = 1 over the interval 1,1/math>. That is, P_n(x) is a polynomial of degree n, such that \int_^1 P_m(x) P_n(x) \,dx = 0 \quad \text n \ne m. With the additional standardization co ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Sturm–Liouville Theory
In mathematics and its applications, classical Sturm–Liouville theory is the theory of ''real'' secondorder ''linear'' ordinary differential equations of the form: for given coefficient functions , , and , an unknown function ''y = y''(''x'') of the free variable , and an unknown constant λ. All homogeneous (i.e. with the righthand side equal to zero) secondorder linear ordinary differential equations can be reduced to this form. In addition, the solution is typically required to satisfy some boundary conditions at extreme values of ''x''. Each such equation () together with its boundary conditions constitutes a Sturm–Liouville problem. In the simplest case where all coefficients are continuous on the finite closed interval and has continuous derivative, a function ''y = y''(''x'') is called a ''solution'' if it is continuously differentiable and satisfies the equation () at every x\in (a,b). In the case of more general , , , the solutions must be understood in a weak ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Floor Function
In mathematics and computer science, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, , , , and . Historically, the floor of has been–and still is–called the integral part or integer part of , often denoted (as well as a variety of other notations). Some authors may define the integral part as if is nonnegative, and otherwise: for example, and . The operation of truncation generalizes this to a specified number of digits: truncation to zero significant digits is the same as the integer part. For an integer, . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by AdrienMarie Legendre in his proof of the Legendre's formula. Carl Friedrich Gauss introduced the square bracket notation in hi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Rodrigues' Formula
In mathematics, Rodrigues' formula (formerly called the Ivory–Jacobi formula) is a formula for the Legendre polynomials independently introduced by , and . The name "Rodrigues formula" was introduced by Heine in 1878, after Hermite pointed out in 1865 that Rodrigues was the first to discover it. The term is also used to describe similar formulas for other orthogonal polynomials. describes the history of the Rodrigues formula in detail. Statement Let \_^\infty be a sequence of orthogonal polynomials satisfying the orthogonality condition \int_a^b P_m(x) P_n(x) w(x) \, dx = K_n \delta_, where w(x) is a suitable weight function, K_n is a constant depending on n, and \delta_ is the Kronecker delta. If the weight function w(x) satisfies the following differential equation (called Pearson's differential equation), \frac = \frac, where A(x) is a polynomial with degree at most 1 and B(x) is a polynomial with degree at most 2 and, further, the limits \lim_ w(x) B(x) = 0, \qquad \lim_ w( ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just nonnegative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker delta ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Orthogonal Function
In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval: : \langle f,g\rangle = \int \overlineg(x)\,dx . The functions f and g are orthogonal when this integral is zero, i.e. \langle f, \, g \rangle = 0 whenever f \neq g. As with a basis of vectors in a finitedimensional space, orthogonal functions can form an infinite basis for a function space. Conceptually, the above integral is the equivalent of a vector dotproduct; two vectors are mutually independent (orthogonal) if their dotproduct is zero. Suppose \ is a sequence of orthogonal functions of nonzero ''L''2norms \left\, f_n \right\, _2 = \sqrt = \left(\int f_n ^2 \ dx \right) ^\frac . It follows that the sequence \left\ is of functions of ''L''2norm one, forming an orthonormal sequence. To have a defined ''L'' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

L2norm
In mathematics, a norm is a function (mathematics), function from a real number, real or complex number, complex vector space to the nonnegative real numbers that behaves in certain ways like the distance from the Origin (mathematics), origin: it Equivariant map, commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the #Euclidean norm, Euclidean norm, or #pnorm, 2norm, which may also be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". A pseudonorm may satisfy the sa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Spherical Harmonics
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, each function defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of circular functions (sines and cosines) via Fourier series. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3), the group of rotations in three dimensions, and thus play a central role in the group theoretic discussion of SO(3). Spherical harmonics originate ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Spherical Coordinates
In mathematics, a spherical coordinate system is a coordinate system for threedimensional space where the position of a point is specified by three numbers: the ''radial distance'' of that point from a fixed origin, its ''polar angle'' measured from a fixed zenith direction, and the ''azimuthal angle'' of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the threedimensional version of the polar coordinate system. The radial distance is also called the ''radius'' or ''radial coordinate''. The polar angle may be called '' colatitude'', ''zenith angle'', '' normal angle'', or ''inclination angle''. When radius is fixed, the two angular coordinates make a coordinate system on the sphere sometimes called spherical polar coordinates. The use of symbols and the order of the coordinates differs among sources and disciplines. This article will us ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Laplace's Equation
In mathematics and physics, Laplace's equation is a secondorder partial differential equation named after PierreSimon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nabla \cdot \nabla = \nabla^2 is the Laplace operator,The delta symbol, Δ, is also commonly used to represent a finite change in some quantity, for example, \Delta x = x_1  x_2. Its use to represent the Laplacian should not be confused with this use. \nabla \cdot is the divergence operator (also symbolized "div"), \nabla is the gradient operator (also symbolized "grad"), and f (x, y, z) is a twicedifferentiable realvalued function. The Laplace operator therefore maps a scalar function to another scalar function. If the righthand side is specified as a given function, h(x, y, z), we have \Delta f = h. This is called Poisson's equation, a generalization of Laplace's equation. Laplace's equation and Poisson's equation are the simplest exa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Legendre Functions
In physical science and mathematics, the Legendre functions , and associated Legendre functions , , and Legendre functions of the second kind, , are all solutions of Legendre's differential equation. The Legendre polynomials and the associated Legendre polynomials are also solutions of the differential equation in special cases, which, by virtue of being polynomials, have a large number of additional properties, mathematical structure, and applications. For these polynomial solutions, see the separate Wikipedia articles. Legendre's differential equation The general Legendre equation reads \left(1  x^2\right) y''  2xy' + \left lambda(\lambda+1)  \frac\righty = 0, where the numbers and may be complex, and are called the degree and order of the relevant function, respectively. The polynomial solutions when is an integer (denoted ), and are the Legendre polynomials ; and when is an integer (denoted ), and is also an integer with are the associated Legendre polynomials ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 