Kuratowski Closure Axioms
   HOME
*





Kuratowski Closure Axioms
In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others. A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator. Definition Kuratowski closure operators and weakenings Let X be an arbitrary set and \wp(X) its power set. A Kuratowski closure operator is a unary operation \mathbf:\wp(X) \to \wp(X) with the following properties: A consequence of \mathbf preserving binary unions is the following condition: In fact if we rewrite the equality in 4'' as an inclusion, giving the weaker axiom 4'''' (''subadditivity''): then it is easy to see that axioms 4''' and 4'''' together are eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a '' topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Topology
In abstract algebra, an interior algebra is a certain type of algebraic structure that encodes the idea of the topological interior of a set. Interior algebras are to topology and the modal logic S4 what Boolean algebras are to set theory and ordinary propositional logic. Interior algebras form a variety (universal algebra), variety of modal algebras. Definition An interior algebra is an algebraic structure with the signature (logic), signature :⟨''S'', ·, +, ′, 0, 1, I⟩ where :⟨''S'', ·, +, ′, 0, 1⟩ is a Boolean algebra and postfix I designates a unary operator, the interior operator, satisfying the identities: # ''x''I ≤ ''x'' # ''x''II = ''x''I # (''xy'')I = ''x''I''y''I # 1I = 1 ''x''I is called the interior of ''x''. The duality (order theory), dual of the interior operator is the closure operator C defined by ''x''C = ((''x''′)I)′. ''x''C is called the closure of ''x''. By the duality (order theory), principle of duality, the closure operator sat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE