Kleene Algebra
In mathematics, a Kleene algebra ( ; named after Stephen Cole Kleene) is an idempotent (and thus partially ordered) semiring endowed with a closure operator. It generalizes the operations known from regular expressions. Definition Various inequivalent definitions of Kleene algebras and related structures have been given in the literature. Here we will give the definition that seems to be the most common nowadays. A Kleene algebra is a set ''A'' together with two binary operations + : ''A'' × ''A'' → ''A'' and · : ''A'' × ''A'' → ''A'' and one function * : ''A'' → ''A'', written as ''a'' + ''b'', ''ab'' and ''a''* respectively, so that the following axioms are satisfied. * Associativity of + and ·: ''a'' + (''b'' + ''c'') = (''a'' + ''b'') + ''c'' and ''a''(''bc'') = (''ab'')''c'' for all ''a'', ''b'', ''c'' in ''A''. * Commutativity of +: ''a'' + ''b'' = ''b'' + ''a'' for all ''a'', ''b'' in ''A'' * Distributivity: ''a''(''b'' + ''c'') = (''ab'') + (''ac'') ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and mathematical analysis, analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of mathematical object, abstract objects and the use of pure reason to proof (mathematics), prove them. These objects consist of either abstraction (mathematics), abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of inference rule, deductive rules to already established results. These results include previously proved theorems, axioms ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Programming Language Theory
Programming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of formal languages known as programming languages. Programming language theory is closely related to other fields including mathematics, software engineering, and linguistics. There are a number of academic conferences and journals in the area. History In some ways, the history of programming language theory predates even the development of programming languages themselves. The lambda calculus, developed by Alonzo Church and Stephen Cole Kleene in the 1930s, is considered by some to be the world's first programming language, even though it was intended to ''model'' computation rather than being a means for programmers to ''describe'' algorithms to a computer system. Many modern functional programming languages have been described as providing a "thin veneer" over the lambda calculus, and many are easily described i ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finitestate machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Empty String
In formal language theory, the empty string, or empty word, is the unique string of length zero. Formal theory Formally, a string is a finite, ordered sequence of characters such as letters, digits or spaces. The empty string is the special case where the sequence has length zero, so there are no symbols in the string. There is only one empty string, because two strings are only different if they have different lengths or a different sequence of symbols. In formal treatments, the empty string is denoted with ε or sometimes Λ or λ. The empty string should not be confused with the empty language ∅, which is a formal language (i.e. a set of strings) that contains no strings, not even the empty string. The empty string has several properties: * , ε, = 0. Its string length is zero. * ε ⋅ s = s ⋅ ε = s. The empty string is the identity element of the concatenation operation. The set of all strings forms a free monoid with respect to ⋅ and ε. * εR = ε. Reversal o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called nonempty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used as a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Kleene Star
In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V is written as ''V^*''. It is widely used for regular expressions, which is the context in which it was introduced by Stephen Kleene to characterize certain automata, where it means "zero or more repetitions". # If V is a set of strings, then ''V^*'' is defined as the smallest superset of V that contains the empty string \varepsilon and is closed under the string concatenation operation. # If V is a set of symbols or characters, then ''V^*'' is the set of all strings over symbols in V, including the empty string \varepsilon. The set ''V^*'' can also be described as the set containing the empty string and all finitelength strings that can be generated by concatenating arbitrar ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Concatenation
In formal language theory and computer programming, string concatenation is the operation of joining character strings endtoend. For example, the concatenation of "snow" and "ball" is "snowball". In certain formalisations of concatenation theory, also called string theory, string concatenation is a primitive notion. Syntax In many programming languages, string concatenation is a binary infix operator. The + (plus) operator is often overloaded to denote concatenation for string arguments: "Hello, " + "World" has the value "Hello, World". In other languages there is a separate operator, particularly to specify implicit type conversion to string, as opposed to more complicated behavior for generic plus. Examples include . in Edinburgh IMP, Perl, and PHP, .. in Lua, and & in Ada, AppleScript, and Visual Basic. Other syntax exists, like , , in PL/I and Oracle Database SQL. In a few languages, notably C, C++, and Python, there is string literal concatenation, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of zero (0) sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the table of mathematical symbols. Union of two sets The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In setbuilder notation, :A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot have duplicate elements, so the union of the sets and is . Multipl ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Recursive Language
In mathematics, logic and computer science, a formal language (a set of finite sequences of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the language. Equivalently, a formal language is recursive if there exists a total Turing machine (a Turing machine that halts for every given input) that, when given a finite sequence of symbols as input, accepts it if it belongs to the language and rejects it otherwise. Recursive languages are also called decidable. The concept of decidability may be extended to other models of computation. For example, one may speak of languages decidable on a nondeterministic Turing machine. Therefore, whenever an ambiguity is possible, the synonym used for "recursive language" is Turingdecidable language, rather than simply ''decidable''. The class of all recursive languages is often called R, although this name is also used for the class RP. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Contextfree Language
In formal language theory, a contextfree language (CFL) is a language generated by a contextfree grammar (CFG). Contextfree languages have many applications in programming languages, in particular, most arithmetic expressions are generated by contextfree grammars. Background Contextfree grammar Different contextfree grammars can generate the same contextfree language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language. Automata The set of all contextfree languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct. Examples An example contextfree language is L = \, the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Regular Language
In theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expressions engines, which are augmented with features that allow recognition of nonregular languages). Alternatively, a regular language can be defined as a language recognized by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem (after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular languages are the languages generated by Type3 grammars. Formal definition The collection of regular languages over an alphabet Σ is defined recursively as follows: * The empty language Ø is a regular language. * For each ''a'' ∈ Σ (''a'' belongs to Σ), the singleton language is a regular language. * If ''A'' is a regular language, ''A''* ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Free Object
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set ''A'' can be thought of as being a "generic" algebraic structure over ''A'': the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of category theory, although this is in yet more abstract terms. Definition Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function between vector spaces is entirely determined by its values on a basis of the vector space The following definition translates this to any category. A concrete category is a category that is equipped with a faithf ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 