Inclusion Order
   HOME





Inclusion Order
In the mathematical field of order theory, an inclusion order is the partial order that arises as the subset-inclusion relation on some collection of objects. In a simple way, every poset ''P'' = (''X'',≤) is (isomorphic to) an inclusion order (just as every group is isomorphic to a permutation group – see Cayley's theorem). To see this, associate to each element ''x'' of ''X'' the set : X_ = \ ; then the transitivity of ≤ ensures that for all ''a'' and ''b'' in ''X'', we have : X_ \subseteq X_ \text a \leq b . There can be sets S of cardinality less than , X, such that ''P'' is isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ... to the inclusion order on ''S''. The size of the smallest possible ''S'' is called the 2-dimension of ''P''. Several important ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Lattice
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle. __TOC__ History The term "Boolean algebra" honors George Boole (1815–1864), a self-educated Engli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jorge Urrutia Galicia
Jorge Urrutia Galicia is a Mexican mathematician and computer scientist in the Institute of Mathematics of the National Autonomous University of Mexico (UNAM). His research primarily concerns discrete geometry, discrete and computational geometry. Education and career Urrutia earned his Ph.D. from the University of Waterloo in 1980, under the supervision of Ronald C. Read. He worked for many years at the University of Ottawa before moving to UNAM in 1999.Jorge Urrutia Galicia
, Mexican Conference on Discrete Mathematics and Computational Geometry, retrieved 2015-03-23.
With Jörg-Rüdiger Sack in 1991, he was founding co-editor-in-chief of the academic journal ''Computational Geometry (journal), Computational Geometry: Theory and Applications''.


Recognition

Urrutia is a member of the Mexican Academy of Scienc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order (journal)
''Order'' (subtitled ''A Journal on the Theory of Ordered Sets and its Applications'') is a quarterly peer-reviewed academic journal on order theory and its applications, published by Springer Science+Business Media. It was established in 1984 by Ivan Rival (University of Calgary). From 2010 to 2018, its editor-in-chief was Dwight Duffus (Emory University). He was succeeded in 2019 by Ryan R. Martin (Iowa State University). Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2017 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 0.353. References External links * Order theory Order theory journals Springer Science+Business Media academic journals Academic journals established ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interval Order
In mathematics, especially order theory, the interval order for a collection of intervals on the real line is the partial order corresponding to their left-to-right precedence relation—one interval, ''I''1, being considered less than another, ''I''2, if ''I''1 is completely to the left of ''I''2. More formally, a countable poset P = (X, \leq) is an interval order if and only if there exists a bijection from X to a set of real intervals, so x_i \mapsto (\ell_i, r_i) , such that for any x_i, x_j \in X we have x_i d one must have a > d or c > b. The subclass of interval orders obtained by restricting the intervals to those of unit length, so they all have the form (\ell_i, \ell_i + 1), is precisely the semiorders. The complement of the comparability graph of an interval order (X, ≤) is the interval graph (X, \cap). Interval orders should not be confused with the interval-containment orders, which are the inclusion orders on intervals on the real line (equivalently, the orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intersection Graph
In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types of sets that are used to form an intersection representation of them. Formal definition Formally, an intersection graph is an undirected graph formed from a family of sets : S_i, \,\,\, i = 0, 1, 2, \dots by creating one vertex for each set , and connecting two vertices and by an edge whenever the corresponding two sets have a nonempty intersection, that is, : E(G) = \. All graphs are intersection graphs Any undirected graph may be represented as an intersection graph. For each vertex of , form a set consisting of the edges incident to ; then two such sets have a nonempty intersection if and only if the corresponding vertices share an edge. Therefore, is the intersection graph of the sets . provide a construction that is more ef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birkhoff's Representation Theorem
:''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (other).'' In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. Here, a lattice is an abstract structure with two binary operations, the "meet" and "join" operations, which must obey certain axioms; it is distributive if these two operations obey the distributive law. The union and intersection operations, in a family of sets that is closed under these operations, automatically form a distributive lattice, and Birkhoff's representation theorem states that (up to isomorphism) every finite distributive lattice can be formed in this way. It is named after Garrett Birkhoff, who published a proof of it in 1937.. The theorem can be interpreted as providing a one-to-one correspondenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Origin (mathematics)
In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter ''O'', used as a fixed point of reference for the geometry of the surrounding space. In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same answer. This allows one to pick an origin point that makes the mathematics as simple as possible, often by taking advantage of some kind of geometric symmetry. Cartesian coordinates In a Cartesian coordinate system, the origin is the point where the axes of the system intersect.. The origin divides each of these axes into two halves, a positive and a negative semiaxis. Points can then be located with reference to the origin by giving their numerical coordinates—that is, the positions of their projections along each axis, either in the positive or negative direction. The coordinates of the origin are always all zero, for example (0,0) in two dimensions and (0,0,0) in three. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Dimension
In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order. This concept is also sometimes called the order dimension or the Dushnik–Miller dimension of the partial order. first studied order dimension; for a more detailed treatment of this subject than provided here, see . Formal definition The dimension of a poset ''P'' is the least integer ''t'' for which there exists a family :\mathcal R=(<_1,\dots,<_t) of s of ''P'' so that, for every ''x'' and ''y'' in ''P'', ''x'' precedes ''y'' in ''P'' if and only if it precedes ''y'' in all of the linear extensions, if any such ''t'' exists. That is, :P=\bigcap\mathcal R=\bigcap_^t <_i. An alternative definition of order dimension is the minimal number of

picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems in general (although one usually is also interested in the actual difference of two numbers, which is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]