Euclidean Algorithm
In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in Euclid's Elements, his ''Elements'' (c. 300 BC). It is an example of an ''algorithm'', a stepbystep procedure for performing a calculation according to welldefined rules, and is one of the oldest algorithms in common use. It can be used to reduce Fraction (mathematics), fractions to their Irreducible fraction, simplest form, and is a part of many other numbertheoretic and cryptographic calculations. The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

ACCESS
Access may refer to: Companies and organizations * ACCESS (Australia), an Australian youth network * Access (credit card), a former credit card in the United Kingdom * Access Co., a Japanese software company * Access Healthcare, an Indian BPO services provider * Access International Advisors, a hedge fund * AirCraft Casualty Emotional Support Services * Arab Community Center for Economic and Social Services * Access, the Alphabet division containing Google Fiber * Access, the Southwest Ohio Regional Transit Authority's paratransit service Sailing * Access 2.3, a sailing keelboat * Access 303, a sailing keelboat * Access Liberty, a sailing keelboat Television * ''Access Hollywood'', formerly ''Access'', an American entertainment newsmagazine * ''Access'' (British TV programme), a British entertainment television programme * ''Access'' (Canadian TV series), a Canadian television series (1974–1982) * Access TV, a former Canadian educational television channel (1973–2011) ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Gabriel Lamé
Gabriel Lamé (22 July 1795 – 1 May 1870) was a French mathematician who contributed to the theory of partial differential equations by the use of curvilinear coordinates, and the mathematical theory of elasticity (for which linear elasticity and finite strain theory elaborate the mathematical abstractions). Biography Lamé was born in Tours, in today's ''département'' of IndreetLoire. He became well known for his general theory of curvilinear coordinates and his notation and study of classes of ellipselike curves, now known as Lamé curves or superellipses, and defined by the equation: : \left, \,\,\^n + \left, \,\,\^n =1 where ''n'' is any positive real number. He is also known for his running time analysis of the Euclidean algorithm, marking the beginning of computational complexity theory. Using Fibonacci numbers, he proved that when finding the greatest common divisor of integers ''a'' and ''b'', the algorithm runs in no more than 5''k'' steps, where ''k'' is the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Fundamental Theorem Of Arithmetic
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. For example, : 1200 = 2^4 \cdot 3^1 \cdot 5^2 = (2 \cdot 2 \cdot 2 \cdot 2) \cdot 3 \cdot (5 \cdot 5) = 5 \cdot 2 \cdot 5 \cdot 2 \cdot 3 \cdot 2 \cdot 2 = \ldots The theorem says two things about this example: first, that 1200 be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product. The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (for example, 12 = 2 \cdot 6 = 3 \cdot 4). This theorem is one of the main reasons why 1 is not considered a prime number: if 1 were prime, then factorization into primes would not be unique; for example, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lagrange's Foursquare Theorem
Lagrange's foursquare theorem, also known as Bachet's conjecture, states that every natural number can be represented as the sum of four integer squares. That is, the squares form an additive basis of order four. p = a_0^2 + a_1^2 + a_2^2 + a_3^2 where the four numbers a_0, a_1, a_2, a_3 are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows: \begin 3 & = 1^2+1^2+1^2+0^2 \\ pt31 & = 5^2+2^2+1^2+1^2 \\ pt310 & = 17^2+4^2+2^2+1^2 \\ pt& = 16^2 + 7^2 + 2^2 +1^2 \\ pt& = 15^2 + 9^2 + 2^2 +0^2 \\ pt& = 12^2 + 11^2 + 6^2 + 3^2. \end This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem. Historical development From examples given in the '' Arithmetica,'' it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. Bu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integervalued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Diophantine Approximation
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number ''a''/''b'' is a "good" approximation of a real number ''α'' if the absolute value of the difference between ''a''/''b'' and ''α'' may not decrease if ''a''/''b'' is replaced by another rational number with a smaller denominator. This problem was solved during the 18th century by means of continued fractions. Knowing the "best" approximations of a given number, the main problem of the field is to find sharp upper and lower bounds of the above difference, expressed as a function of the denominator. It appears that these bounds depend on the nature of the real numbers to be approximated: the lower bound for the approximation of a rational number by another rational number is larger than ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Continued Fraction
In mathematics, a continued fraction is an expression (mathematics), expression obtained through an iterative process of representing a number as the sum of its integer part and the multiplicative inverse, reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression (mathematics), infinite expression. In either case, all integers in the sequence, other than the first, must be positive number, positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or function (mathematics), functions are used in place of one or more of the numerat ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then without knowing the value of ''n'', we can determine that the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if ''n'' is a natural number less than 105, then 23 is the only possible value of ''n''. The earliest known statement of the theorem is by the Chinese mathematician Suntzu in the '' Suntzu Suanching'' in the 3rd century CE. The Chinese remainder theorem is widely used for computing with lar ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Diophantine Equation
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called ''Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Di ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Integer Factorization
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are sufficiently large, no efficient nonquantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA publickey encryption and the RSA digital signature. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing. In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240digit (795bit) number (RSA240) utilizing approximately 900 coreyears of computing power. The researchers estimated that a 1024bit RSA ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Internet
The Internet (or internet) is the global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP) to communicate between networks and devices. It is a '' network of networks'' that consists of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies. The Internet carries a vast range of information resources and services, such as the interlinked hypertext documents and applications of the World Wide Web (WWW), electronic mail, telephony, and file sharing. The origins of the Internet date back to the development of packet switching and research commissioned by the United States Department of Defense in the 1960s to enable timesharing of computers. The primary precursor network, the ARPANET, initially served as a backbone for interconnection of regional academic and military networks in the 1970s to enable resource shari ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cryptographic Protocol
A security protocol (cryptographic protocol or encryption protocol) is an abstract or concrete protocol that performs a securityrelated function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol describes how the algorithms should be used and includes details about data structures and representations, at which point it can be used to implement multiple, interoperable versions of a program. Cryptographic protocols are widely used for secure applicationlevel data transport. A cryptographic protocol usually incorporates at least some of these aspects: * Key agreement or establishment * Entity authentication * Symmetric encryption and message authentication material construction * Secured applicationlevel data transport * Nonrepudiation methods * Secret sharing methods * Secure multiparty computation For example, Transport Layer Security (TLS) is a cryptographic protocol that is used to secure web (HTTPS) connections. It has an entit ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 