Differintegral
   HOME





Differintegral
In fractional calculus, an area of mathematical analysis, the differintegral is a combined differentiation/ integration operator. Applied to a function ƒ, the ''q''-differintegral of ''f'', here denoted by :\mathbb^q f is the fractional derivative (if ''q'' > 0) or fractional integral (if ''q'' So, \frac = \mathcal^\left\ which generalizes to \mathbb^qf(t) = \mathcal^\left\. Under the bilateral Laplace transform, here denoted by \mathcal and defined as \mathcal (t)=\int_^\infty e^ f(t)\, dt, differentiation transforms into a multiplication \mathcal\left frac\right= s\mathcal (t) Generalizing to arbitrary order and solving for \mathbb^qf(t), one obtains \mathbb^qf(t)=\mathcal^\left\. Representation via Newton series is the Newton interpolation over consecutive integer orders: \mathbb^qf(t) =\sum_^ \binom m \sum_^m\binom mk(-1)^f^(x). For fractional derivative definitions described in this section, the following identities hold: :\mathbb^q(t^n)=\fract^ :\mathbb^q(\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractional Calculus
Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator D D f(x) = \frac f(x)\,, and of the integration operator J The symbol J is commonly used instead of the intuitive I in order to avoid confusion with other concepts identified by similar glyphs, such as identities. J f(x) = \int_0^x f(s) \,ds\,, and developing a calculus for such operators generalizing the classical one. In this context, the term ''powers'' refers to iterative application of a linear operator D to a function that is, repeatedly composing D with itself, as in \begin D^n(f) &= (\underbrace_n)(f) \\ &= \underbrace_n (f)\cdots))). \end For example, one may ask for a meaningful interpretation of \sqrt = D^ as an analogue of the functional square root for the differentiation operator, that is, an expression for some linear operator that, when applied to any f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Periodic Function
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a ''cycle''. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. Any function that is not periodic is called ''aperiodic''. Definition A function is said to be periodic if, for some nonzero constant , it is the case that :f(x+P) = f(x) for all values of in the domain. A nonzero constant for which this is the case is called a period of the function. If there exists a least positive constant with this property, it is called the fundamental period (also primitive period, basic period, or prime period.) Often, "the" period of a function is used to mean its fundamental period. A funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fractional-order Integrator
A fractional-order integrator or just simply fractional integrator is an integrator device that calculates the fractional-order integral or derivative (usually called a differintegral) of an input. Differentiation or integration is a real or complex parameter. The fractional integrator is useful in fractional-order control where the history of the system under control is important to the control system output. Some industrial controllers use fractional-order PID controllers (FOPIDs), which have exceeded the performance of standard ones, to the extent that standard ones are sometimes considered as a special case of FOPIDs. Fractional-order integrators and differentiators are the main component of FOPIDs. Overview The differintegral function, :_a \mathbb^q_t \left( f(x) \right) includes the integer order differentiation and integration functions, and allows a continuous range of functions around them. The differintegral parameters are ''a'', ''t'', and ''q''. The parameters ''a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the elementary arithmetic multiplication): , or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. As in the case of groups or magmas, the semigroup operation need not be commutative, so is not necessarily equal to ; a well-known example of an operation that is associative but non-commutative is matrix multiplication. If the semigroup operation is commutative, then the semigroup is called a ''commutative semigroup' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a linear endomorphism. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bilateral Laplace Transform
In mathematics, the two-sided Laplace transform or bilateral Laplace transform is an integral transform equivalent to probability's moment-generating function. Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If ''f''(''t'') is a real- or complex-valued function of the real variable ''t'' defined for all real numbers, then the two-sided Laplace transform is defined by the integral :\mathcal\(s) = F(s) = \int_^\infty e^ f(t)\, dt. The integral is most commonly understood as an improper integral, which converges if and only if both integrals :\int_0^\infty e^ f(t) \, dt,\quad \int_^0 e^ f(t)\, dt exist. There seems to be no generally accepted notation for the two-sided transform; the \mathcal used here recalls "bilateral". The two-sided transform used by some authors is :\mathcal\(s) = s\mathcal\(s) = sF(s) = s \int_^\infty e^ f(t)\, dt. In pure mathematics the arg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function (mathematics), function as input then outputs another function that describes the extent to which various Frequency, frequencies are present in the original function. The output of the transform is a complex number, complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the Operation (mathematics), mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical Chord (music), chord into the sound intensity, intensities of its constituent Pitch (music), pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the #Uncertainty principle, uncerta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Caputo Differintegral
Caputo is a common Italian surname. It derives from the Latin root of ''caput'', meaning "source" or "head" - words with similar roots include "chapter", "capital", or "captain". People with that name include: * Corrado Caputo (1242-1320), son of Frederick of Antioch * Andrea Caputo, Italian Roman Catholic prelate * Anthony "Acid" Caputo, American DJ, producer and remixer * Bruce Faulkner Caputo, American politician * Chuck Caputo, American politician * Dante Caputo, Argentine academic, politician and diplomat * David A. Caputo, American academic * Denis Caputo, Argentine footballer * Francesco Caputo, Italian footballer * Frank Caputo, Canadian politician * John D. Caputo, American philosopher * Joseph Claude Caputo, American jazz musician, known as Joe Cabot * Keith Caputo, formerly known as Mina Caputo, American singer * Lisa Caputo, American businesswoman * Luis Caputo, Argentine economist and politician * Michael A. Caputo, American professional football player * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl Differintegral
In mathematics, the Weyl integral (named after Hermann Weyl) is an operator defined, as an example of fractional calculus, on functions ''f'' on the unit circle having integral 0 and a Fourier series. In other words there is a Fourier series for ''f'' of the form : \sum_^ a_n e^ with ''a''0 = 0. Then the Weyl integral operator of order ''s'' is defined on Fourier series by : \sum_^ (in)^s a_n e^ where this is defined. Here ''s'' can take any real value, and for integer values ''k'' of ''s'' the series expansion is the expected ''k''-th derivative, if ''k'' > 0, or (−''k'')th indefinite integral normalized by integration from ''θ'' = 0. The condition ''a''0 = 0 here plays the obvious role of excluding the need to consider division by zero. The definition is due to Hermann Weyl (1917). See also *Sobolev space In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]