HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff
[::MainTopicLength::#1500] [::ListTopicLength::#1000] [::ListLength::#15] [::ListAdRepeat::#3]

Triangulation
In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to it from known points. Specifically in surveying, triangulation per se involves only angle measurements, rather than measuring distances to the point directly as in trilateration; the use of both angles and distance measurements is referred to as triangulateration.Contents1 Applications 2 History 3 See also 4 ReferencesApplications[edit] Optical 3D measuring systems use this principle as well in order to determine the spatial dimensions and the geometry of an item. Basically, the configuration consists of two sensors observing the item. One of the sensors is typically a digital camera device, and the other one can also be a camera or a light projector. The projection centers of the sensors and the considered point on the object’s surface define a (spatial) triangle. Within this triangle, the distance between the sensors is the base b and must be known
[...More...]

"Triangulation" on:
Wikipedia
Google
Yahoo

picture info

Liu Hui
Liu
Liu
Hui (fl. 3rd century CE) was a Chinese mathematician who lived in the state of Cao Wei
Cao Wei
during the Three Kingdoms
Three Kingdoms
period (220–280) of China. In 263, he edited and published a book with solutions to mathematical problems presented in the famous Chinese book of mathematics known as The Nine Chapters on the Mathematical Art, in which he was possibly the first mathematician to discover, understand and use negative numbers. He was a descendant of the Marquis of Zi District (菑鄉侯) of the Eastern Han dynasty, whose marquisate is in present-day Zichuan District, Zibo, Shandong. He completed his commentary to the Nine Chapters in the year 263
[...More...]

"Liu Hui" on:
Wikipedia
Google
Yahoo

picture info

Stereopsis
Stereopsis
Stereopsis
(from the Greek στερεο- stereo- meaning "solid", and ὄψις opsis, "appearance, sight") is a term that is most often used to refer to the perception of depth and 3-dimensional structure obtained on the basis of visual information deriving from two eyes by individuals with normally developed binocular vision.[1] Because the eyes of humans, and many animals, are located at different lateral positions on the head, binocular vision results in two slightly different images projected to the retinas of the eyes. The differences are mainly in the relative horizontal position of objects in the two images. These positional differences are referred to as horizontal disparities or, more generally, binocular disparities
[...More...]

"Stereopsis" on:
Wikipedia
Google
Yahoo

picture info

Alidade
An alidade (archaic forms include alhidade, alhidad, alidad) or a turning board is a device that allows one to sight a distant object and use the line of sight to perform a task. This task can be, for example, to draw a line on a plane table in the direction of the object or to measure the angle to the object from some reference point. Angles measured can be horizontal, vertical or in any chosen plane. The alidade was originally a part of many types of scientific and astronomical instrument. At one time, some alidades, particularly those used on graduated circles as on astrolabes, were also called diopters.[1] With modern technology, the name is applied to complete instruments such as the plane table alidade.Contents1 Origins 2 Examples of old alidade types 3 Modern alidade types 4 See also 5 References 6 External linksOrigins[edit]An example of an alidade on a circumferentor
[...More...]

"Alidade" on:
Wikipedia
Google
Yahoo

picture info

Hero Of Alexandria
Hero of Alexandria
Alexandria
(/ˈhɪəroʊ/; Greek: Ἥρων[1] ὁ Ἀλεξανδρεύς, Heron ho Alexandreus; also known as Heron of Alexandria
Alexandria
/ˈhɛrən/; c. 10 AD – c. 70 AD) was a mathematician and engineer who was active in his native city of Alexandria, Roman Egypt. He is considered the greatest experimenter of antiquity[2] and his work is representative of the Hellenistic scientific tradition.[3] Hero published a well recognized description of a steam-powered device called an aeolipile (sometimes called a "Hero engine"). Among his most famous inventions was a windwheel, constituting the earliest instance of wind harnessing on land.[4][5] He is said to have been a follower of the atomists
[...More...]

"Hero Of Alexandria" on:
Wikipedia
Google
Yahoo

picture info

Pei Xiu
Pei Xiu
Pei Xiu
(224–271), courtesy name Jiyan, was a Chinese politician, geographer, writer, and cartographer of the state of Cao Wei
Cao Wei
in the late Three Kingdoms
Three Kingdoms
period and Jin dynasty of China. He was very much trusted by Sima Zhao, and participated in the suppression of Zhuge Dan's rebellion. Following Sima Yan taking the throne of the newly established Jin dynasty, he and Jia Chong had Cao Huan deprived of his position to accord to the will of heaven
[...More...]

"Pei Xiu" on:
Wikipedia
Google
Yahoo

Al-Fadl Ibn Naubakht
Al-Fadl ibn Naubakht, (also written Nowbakht), was an 8th-century Persian scholar at the court of the Caliph Harun al-Rashid. He was son of the famous Naubakht, a former Zoroastrian, who had designed Baghdad. Fadl was appointed by the Caliph as chief librarian of the Khizānat al-Hikmah (The Treasury of Knowledge), which later came to be known as The House of Wisdom. He also wrote astrological treatises, and his skills in translation were used to access Greek texts extensively. See also[edit]List of Iranian scientistsThis article about an Iranian scientist is a stub. You can help by expanding it.v t eThis article about a person involved with library and information science is a stub
[...More...]

"Al-Fadl Ibn Naubakht" on:
Wikipedia
Google
Yahoo

Ahmad Nahavandi
Ahmad ibn Muhammad al-Nahawandi was a Persian astronomer of the 8th and 9th centuries. His name indicates that he was from Nahavand, a city in Iran. He lived and worked at the Academy of Gundishapur, in Khuzestan, Iran, at the time of Yahya ibn Khalid ibn Barmak, who died in 803 AD, where he is reported to have been making astronomical observations around the year 800AD. He and Mashallah ibn Athari
Mashallah ibn Athari
were among the earliest Islamic era astronomers who flourished during the reign of al-Mansur, the second Abbasid
Abbasid
Caliph. He also compiled tables called the comprehensive (Mushtamil). See also[edit]List of Iranian scientistsReferences[edit]The Golden Age of Persia. By Richard Nelson Frye. p163. H. Suter: Die Mathematiker und Astronomen der Araber (l0, 1900)This article about an astronomer is a stub. You can help by expanding it.v t eThis article about an Iranian mathematician is a stub
[...More...]

"Ahmad Nahavandi" on:
Wikipedia
Google
Yahoo

picture info

Anno Domini
The terms anno Domini[a][1][2] (AD) and before Christ[b][3][4][5] (BC) are used to label or number years in the Julian and Gregorian calendars. The term anno Domini is Medieval Latin
Medieval Latin
and means "in the year of the Lord",[6] but is often presented using "our Lord" instead of "the Lord",[7][8] taken from the full original phrase "anno Domini nostri Jesu Christi", which translates to "in the year of our Lord Jesus
Jesus
Christ". This calendar era is based on the traditionally reckoned year of the conception or birth of Jesus
Jesus
of Nazareth, with AD counting years from the start of this epoch, and BC denoting years before the start of the era. There is no year zero in this scheme, so the year AD 1 immediately follows the year 1 BC
[...More...]

"Anno Domini" on:
Wikipedia
Google
Yahoo

picture info

Common Era
Common Era or Current Era (CE)[1] is a name for a calendar era widely used around the world today. The era preceding CE is known as before the Common or Current Era (BCE). The Current Era notation system can be used as an alternative to the Dionysian era
Dionysian era
system, which distinguishes eras as AD (anno Domini, "[the] year of [the] Lord")[2] and BC ("before Christ"). The two notation systems are numerically equivalent; thus "2018 CE" corresponds to "AD 2018" and "400 BCE" corresponds to "400 BC".[2][3][4][a] Both notations refer to the Gregorian calendar
Gregorian calendar
(and its predecessor, the Julian calendar)
[...More...]

"Common Era" on:
Wikipedia
Google
Yahoo

picture info

Rhind Papyrus
The Rhind Mathematical Papyrus
Papyrus
(RMP; also designated as papyrus British Museum
British Museum
10057 and pBM 10058) is one of the best known examples of Egyptian mathematics. It is named after Alexander Henry Rhind, a Scottish antiquarian, who purchased the papyrus in 1858 in Luxor, Egypt; it was apparently found during illegal excavations in or near the Ramesseum. It dates to around 1550 BC.[1] The British Museum, where the majority of papyrus is now kept, acquired it in 1865 along with the Egyptian Mathematical Leather Roll, also owned by Henry Rhind;[2] there are a few small fragments held by the Brooklyn Museum in New York City[3][4] and an 18 cm central section is missing. It is one of the two well-known Mathematical Papyri along with the Moscow Mathematical Papyrus
[...More...]

"Rhind Papyrus" on:
Wikipedia
Google
Yahoo

picture info

Diogenes Laërtius
Diogenes Laërtius
Diogenes Laërtius
(/daɪˈɒdʒɪniːz leɪˈɜːrʃiəs/;[1] Greek: Διογένης Λαέρτιος, Diogenēs Laertios; fl. 3rd century AD) was a biographer of the Greek philosophers. Nothing is definitively known about his life, but his surviving Lives and Opinions of Eminent Philosophers is a principal source for the history of Greek philosophy. "Diogenes has acquired an importance out of all proportion to his merits because the loss of many primary sources and of the earlier secondary compilations has accidentally left him the chief continuous source for the history of Greek philosophy."[2]Contents1 Life 2 Writings 3 Editions and translations 4 Notes 5 References 6 Further reading 7 External linksLife[edit] Although not definitive, Laërtius must have lived after Sextus Empiricus (c. 200), whom he mentions, and before Stephanus of Byzantium and Sopater of Apamea (c. 500), who quote him
[...More...]

"Diogenes Laërtius" on:
Wikipedia
Google
Yahoo

Proclus
Proclus Lycaeus (/ˈprɒkləs ˌlaɪˈsiːəs/; 8 February 412 – 17 April 485 AD), called the Successor (Greek Πρόκλος ὁ Διάδοχος, Próklos ho Diádokhos), was a Greek Neoplatonist
Neoplatonist
philosopher, one of the last major classical philosophers (see Damascius). He set forth one of the most elaborate and fully developed systems of Neoplatonism
[...More...]

"Proclus" on:
Wikipedia
Google
Yahoo

picture info

Joseph Needham
Noel Joseph Terence Montgomery Needham CH FRS FBA[1] (/ˈniːdəm/; 9 December 1900 – 24 March 1995) was a British biochemist, historian and sinologist known for his scientific research and writing on the history of Chinese science and technology
[...More...]

"Joseph Needham" on:
Wikipedia
Google
Yahoo

picture info

Haidao Suanjing
Haidao Suanjing
Haidao Suanjing
(海岛算经; The Sea Island Mathematical Manual) was written by the Chinese mathematician Liu Hui
Liu Hui
of the
[...More...]

"Haidao Suanjing" on:
Wikipedia
Google
Yahoo

picture info

Yvonne Dold-Samplonius
Yvonne Dold-Samplonius
Yvonne Dold-Samplonius
(20 May 1937 – 16 June 2014) was a Dutch mathematician and historian who specialized in the history of Islamic mathematics during the Middle age. She was particularly interested in the mathematical methods used by Islamic architects and builders of the Middle Ages for measurements of volumes and measurements of religious buildings or in the design of muqarnas.Contents1 Biography 2 Publications 3 Videos 4 ReferencesBiography[edit] Born on 20 May 1937 in Haarlem, Yvonne Samplonius obtained her degree in mathematics and Arabic from the University of Amsterdam (Doktoratsexamen) in 1966.[1] Yvonne Dold-Samplonius
Yvonne Dold-Samplonius
married in 1965 the German mathematician Albrecht Dold
[...More...]

"Yvonne Dold-Samplonius" on:
Wikipedia
Google
Yahoo
.