HOME
*





Spread-spectrum
In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal (e.g., an electrical, electromagnetic, or acoustic signal) generated with a particular bandwidth is deliberately spread in the frequency domain, resulting in a signal with a wider bandwidth. These techniques are used for a variety of reasons, including the establishment of secure communications, increasing resistance to natural interference, noise, and jamming, to prevent detection, to limit power flux density (e.g., in satellite downlinks), and to enable multiple-access communications. Telecommunications Spread spectrum generally makes use of a sequential noise-like signal structure to spread the normally narrowband information signal over a relatively wideband (radio) band of frequencies. The receiver correlates the received signals to retrieve the original information signal. Originally there were two motivations: either to resist enemy efforts to jam the communications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Code-division Multiple Access
Code-division multiple access (CDMA) is a channel access method used by various radio communication technologies. CDMA is an example of multiple access, where several transmitters can send information simultaneously over a single communication channel. This allows several users to share a band of frequencies (see bandwidth). To permit this without undue interference between the users, CDMA employs spread spectrum technology and a special coding scheme (where each transmitter is assigned a code). CDMA optimizes the use of available bandwidth as it transmits over the entire frequency range and does not limit the user's frequency range. It is used as the access method in many mobile phone standards. IS-95, also called "cdmaOne", and its 3G evolution CDMA2000, are often simply referred to as "CDMA", but UMTS, the 3G standard used by GSM carriers, also uses "wideband CDMA", or W-CDMA, as well as TD-CDMA and TD-SCDMA, as its radio technologies. It can be also used as a chan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frequency-hopping
Frequency-hopping spread spectrum (FHSS) is a method of transmitting radio signals by rapidly changing the carrier frequency among many distinct frequencies occupying a large spectral band. The changes are controlled by a code known to both transmitter and receiver. FHSS is used to avoid interference, to prevent eavesdropping, and to enable code-division multiple access (CDMA) communications. The available frequency band is divided into smaller sub-bands. Signals rapidly change ("hop") their carrier frequencies among the center frequencies of these sub-bands in a predetermined order. Interference at a specific frequency will affect the signal only during a short interval. FHSS offers four main advantages over a fixed-frequency transmission: # FHSS signals are highly resistant to narrowband interference because the signal hops to a different frequency band. # Signals are difficult to intercept if the frequency-hopping pattern is not known. # Jamming is also difficult if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frequency-hopping Spread Spectrum
Frequency-hopping spread spectrum (FHSS) is a method of transmitting radio signals by rapidly changing the carrier frequency among many distinct frequencies occupying a large spectral band. The changes are controlled by a code known to both transmitter and receiver. FHSS is used to avoid interference, to prevent eavesdropping, and to enable code-division multiple access (CDMA) communications. The available frequency band is divided into smaller sub-bands. Signals rapidly change ("hop") their carrier frequencies among the center frequencies of these sub-bands in a predetermined order. Interference at a specific frequency will affect the signal only during a short interval. FHSS offers four main advantages over a fixed-frequency transmission: # FHSS signals are highly resistant to narrowband interference because the signal hops to a different frequency band. # Signals are difficult to intercept if the frequency-hopping pattern is not known. # Jamming is also difficult if t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chirp Spread Spectrum
In digital communications, chirp spread spectrum (CSS) is a spread spectrum technique that uses wideband linear frequency modulated chirp pulses to encode information. A chirp is a sinusoidal signal whose frequency increases or decreases over time (often with a polynomial expression for the relationship between time and frequency). Overview As with other spread spectrum methods, chirp spread spectrum uses its entire allocated bandwidth to broadcast a signal, making it robust to channel noise. Further, because the chirps utilize a broad band of the spectrum, chirp spread spectrum is also resistant to multi-path fading even when operating at very low power. However, it is unlike direct-sequence spread spectrum (DSSS) or frequency-hopping spread spectrum (FHSS) in that it does not add any pseudo-random elements to the signal to help distinguish it from noise on the channel, instead relying on the linear nature of the chirp pulse. Additionally, chirp spread spectrum is resistan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct-sequence Spread Spectrum
In telecommunications, direct-sequence spread spectrum (DSSS) is a spread-spectrum modulation technique primarily used to reduce overall signal interference. The direct-sequence modulation makes the transmitted signal wider in bandwidth than the information bandwidth. After the despreading or removal of the direct-sequence modulation in the receiver, the information bandwidth is restored, while the unintentional and intentional interference is substantially reduced. The first known scheme for this technique was introduced by a Swiss inventor, Gustav Guanella. With DSSS, the message bits are modulated by a pseudorandom bit sequence known as a spreading sequence. Each spreading-sequence bit, which is known as a chip, has a much shorter duration (larger bandwidth) than the original message bits. The modulation of the message bits scrambles and spreads the pieces of data, and thereby results in a bandwidth size nearly identical to that of the spreading sequence. The smaller the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Time-hopping Spread Spectrum
Time-hopping (TH) is a communications signal technique which can be used to achieve anti-jamming (AJ) or low probability of intercept (LPI). It can also refer to pulse-position modulation, which in its simplest form employs 2k discrete pulses (referring to the unique positions of the pulse within the transmission window) to transmit k bit(s) per pulse. Details To achieve LPI, the transmission time is changed randomly by varying the period and duty cycle of the pulse (carrier) using a pseudo-random sequence. The transmitted signal will then have intermittent start and stop times. Although often used to form hybrid spread-spectrum (SS) systems, TH is strictly speaking a non-SS technique. Spreading of the spectrum is caused by other factors associated with TH, such as using pulses with low duty cycle having a wide frequency response. An example of hybrid SS is TH-FHSS or hybrid TDMA (time division multiple access). See also *Spread spectrum *Frequency-hopping spread spectrum *Dire ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

picture info

Telefunken
Telefunken was a German radio and television apparatus company, founded in Berlin in 1903, as a joint venture of Siemens & Halske and the ''Allgemeine Elektrizitäts-Gesellschaft'' (AEG) ('General electricity company'). The name "Telefunken" appears in: * the product brand name "Telefunken"; * ''Gesellschaft für drahtlose Telegraphie m.b.H., System Telefunken'', founded 1903 in Berlin as a subsidiary of AEG and Siemens & Halske; * ''Telefunken, Gesellschaft für drahtlose Telegraphie m.b.H.'' (from 1923 to 1955 – since 1941 subsidiary of the AEG only); * ''Telefunken GmbH'' in 1955; * ''Telefunken Aktiengesellschaft (AG)'' in 1963; * Merger of AEG and Telefunken to form ''Allgemeine Elektrizitäts-Gesellschaft AEG-Telefunken'' (from 1967 to 1979); * AEG-TELEFUNKEN AG (from 1979 to 1985); * ''TELEFUNKEN Fernseh und Rundfunk GmbH'', Hanover (1972, subsidiary of AEG-TELEFUNKEN); * Telefunken electronic GmbH (a spin-off of AEG-Telefunken and DASA * the company (since 1992 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Guglielmo Marconi
Guglielmo Giovanni Maria Marconi, 1st Marquis of Marconi (; 25 April 187420 July 1937) was an Italian inventor and electrical engineer, known for his creation of a practical radio wave-based wireless telegraph system. This led to Marconi being credited as the inventor of radio, and he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy".Guglielmo Marconi: The Nobel Prize in Physics 1909
. nobelprize.org
Marconi was also an entrepreneur, businessman, and founder of The Wireless Telegraph & Signal Company in the

Rake Receiver
A rake receiver is a radio receiver designed to counter the effects of multipath fading. It does this by using several "sub-receivers" called ''fingers'', that is, several correlators each assigned to a different multipath component. Each finger independently decodes a single multipath component; at a later stage the contribution of all fingers are combined in order to make the most use of the different transmission characteristics of each transmission path. This could very well result in higher signal-to-noise ratio (or Eb/N0) in a multipath environment than in a "clean" environment. The multipath channel through which a radio wave transmits can be viewed as transmitting the original (line of sight) wave pulse through a number of multipath components. Multipath components are delayed copies of the original transmitted wave traveling through a different echo path, each with a different magnitude and time-of-arrival at the receiver. Since each component contains the original infor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multipath Propagation
In radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from water bodies and terrestrial objects such as mountains and buildings. When the same signal is received over more than one path, it can create interference and phase shifting of the signal. Destructive interference causes fading; this may cause a radio signal to become too weak in certain areas to be received adequately. For this reason, this effect is also known as multipath interference or multipath distortion. Where the magnitudes of the signals arriving by the various paths have a distribution known as the Rayleigh distribution, this is known as Rayleigh fading. Where one component (often, but not necessarily, a line of sight component) dominates, a Rician distribution provides a more accurate model, and this is known a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fading
In wireless communications, fading is variation of the attenuation of a signal with various variables. These variables include time, geographical position, and radio frequency. Fading is often modeled as a random process. A fading channel is a communication channel that experiences fading. In wireless systems, fading may either be due to multipath propagation, referred to as multipath-induced fading, weather (particularly rain), or shadowing from obstacles affecting the wave propagation, sometimes referred to as shadow fading. Key concepts The presence of reflectors in the environment surrounding a transmitter and receiver create multiple paths that a transmitted signal can traverse. As a result, the receiver sees the superposition of multiple copies of the transmitted signal, each traversing a different path. Each signal copy will experience differences in attenuation, delay and phase shift while traveling from the source to the receiver. This can result in either const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]