HOME TheInfoList
Providing Lists of Related Topics to Help You Find Great Stuff







picture info

Silver Halide
A silver halide (or silver salt) is one of the chemical compounds that can form between the element silver and one of the halogens. In particular, bromine, chlorine, iodine and fluorine may each combine with silver to produce silver bromide (AgBr), silver chloride (AgCl), silver iodide (AgI), and three forms of silver fluoride, respectively. As a group, they are often referred to as the silver halides, and are often given the pseudo-chemical notation AgX
[...More Info...]      
[...Related Items...]



picture info

Photon
The photon is a type of elementary particle. It is the quantum of the electromagnetic field including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless,[a] so they always move at the speed of light in vacuum, 299792458 m/s. Like all elementary particles, photons are currently best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles.[2] The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck
[...More Info...]      
[...Related Items...]



picture info

Ultraviolet Light

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce
[...More Info...]      
[...Related Items...]



Corrective Lenses
A corrective lens is a lens typically worn in front of the eye to improve vision. The most common use is to treat refractive errors: myopia, hypermetropia, astigmatism, and presbyopia. Glasses or "spectacles" are worn on the face a short distance in front of the eye. Contact lenses are worn directly on the surface of the eye. Intraocular lenses are surgically implanted most commonly after cataract removal, but can be used for purely refractive purposes. Anti-reflective coatings help to make the eye behind the lens more visible. They also help lessen back reflections of the white of the eye as well as bright objects behind the eyeglasses wearer (e.g. windows, lamps). Such reduction of back reflections increases the apparent contrast of surroundings
[...More Info...]      
[...Related Items...]



Collodion Process
The collodion process is an early photographic process. The collodion process, mostly synonymous with the "collodion wet plate process", requires the photographic material to be coated, sensitized, exposed and developed within the span of about fifteen minutes, necessitating a portable darkroom for use in the field. Collodion is normally used in its wet form, but can also be used in humid ("preserved") or dry form, at the cost of greatly increased exposure time. The latter made the dry form unsuitable for the usual portraiture work of most professional photographers of the 19th century. The use of the dry form was therefore mostly confined to landscape photography and other special applications where minutes-long exposure times were tolerable.[1] The collodion process was invented in 1851 by Frederick Scott Archer and theorized a year earlier by Gustave Le Gray
[...More Info...]      
[...Related Items...]



Quantitative Analysis (chemistry)
In analytical chemistry, quantitative analysis is the determination of the absolute or relative abundance (often expressed as a concentration) of one, several or all particular substance(s) present in a sample.[1] The term "quantitative analysis" is often used in comparison (or contrast) with "qualitative analysis", which seeks information about the identity or form of substance present. For instance, a chemist might be given an unknown solid sample. They will use "qualitative" techniques (perhaps NMR or IR spectroscopy) to identify the compounds present, and then quantitative techniques to determine the amount of each compound in the sample
[...More Info...]      
[...Related Items...]



picture info

Silver Sulfide
Silver sulfide is an inorganic compound with the formula Ag
2
S
. A dense black solid, it is the only sulfide of silver. It is useful as a photosensitizer in photography. It constitutes the tarnish that forms over time on silverware and other silver objects. Silver sulfide is insoluble in most solvents, but is degraded by strong acids. Silver sulfide is a network solid made up of silver (electronegativity of 1.98) and sulfur (electronegativity of 2.58) where the bonds have low ionic character (approximately 10%). Silver sulfide naturally occurs as the tarnish on silverware
[...More Info...]      
[...Related Items...]



picture info

Atomic Orbital
In atomic theory and quantum mechanics, an atomic orbital is a mathematical function describing the location and wave-like behavior of an electron in an atom.[1] This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term atomic orbital may also refer to the physical region or space where the electron can be calculated to be present, as predicted by the particular mathematical form of the orbital.[2] Each orbital in an atom is characterized by a unique set of values of the three quantum numbers n, , and m,[dubious ] which respectively correspond to the electron's energy, angular momentum, and an angular momentum vector component (the magnetic quantum number). Each such orbital can be occupied by a maximum of two electrons, each with its own spin quantum number s
[...More Info...]      
[...Related Items...]