HOME
*





Isotropic
Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also used to describe situations where properties vary systematically, dependent on direction. Isotropic radiation has the same intensity regardless of the direction of measurement, and an isotropic field exerts the same action regardless of how the test particle is oriented. Mathematics Within mathematics, ''isotropy'' has a few different meanings: ; Isotropic manifolds: A manifold is isotropic if the geometry on the manifold is the same regardless of direction. A similar concept is homogeneity. ; Isotropic quadratic form: A quadratic form ''q'' is said to be isotropic if there is a non-zero vector ''v'' such that ; such a ''v'' is an isotropic vector or null vector. In complex geometry, a line through the origin in the direction of an isotropic vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropic Vector Field
Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe situations where properties vary systematically, dependent on direction. Isotropic radiation has the same intensity regardless of the direction of measurement, and an isotropic field exerts the same action regardless of how the test particle is oriented. Mathematics Within mathematics, ''isotropy'' has a few different meanings: ; Isotropic manifolds: A manifold is isotropic if the geometry on the manifold is the same regardless of direction. A similar concept is homogeneity. ; Isotropic quadratic form: A quadratic form ''q'' is said to be isotropic if there is a non-zero vector ''v'' such that ; such a ''v'' is an isotropic vector or null vector. In complex geometry, a line through the origin in the direction of an isotropic vector is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropic Radiation
Isotropic radiation is radiation that has the same intensity regardless of the direction of measurement, such as would be found in a thermal cavity. The radiation may be electromagnetic, sound or may be composed of elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, ...s. Radiation {{Physics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form over . If K=\mathbb R, and the quadratic form takes zero only when all variables are simultaneously zero, then it is a definite quadratic form, otherwise it is an isotropic quadratic form. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry ( Riemannian metric, second fundamental form), differential topology ( intersection forms of four-manifolds), and Lie theory (the Killing form). Quadratic forms are not to be confused with a quadratic equation, which has only one variable and includes terms of degree two or less. A quadrati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Isotropic Coordinates
In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of ''nested round spheres''. There are several different types of coordinate chart which are ''adapted'' to this family of nested spheres; the best known is the Schwarzschild chart, but the isotropic chart is also often useful. The defining characteristic of an isotropic chart is that its radial coordinate (which is different from the radial coordinate of a Schwarzschild chart) is defined so that light cones appear ''round''. This means that (except in the trivial case of a locally flat manifold), the angular isotropic coordinates do not faithfully represent distances within the nested spheres, nor does the radial coordinate faithfully represent radial distances. On the other hand, angles in the constant time hyperslices are represented without distortion, hence the name of the chart. Isotropic charts are most often applied to static spherically symmetric spacetimes in metric theories of gravi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropic Line
In the geometry of quadratic forms, an isotropic line or null line is a line for which the quadratic form applied to the displacement vector between any pair of its points is zero. An isotropic line occurs only with an isotropic quadratic form, and never with a definite quadratic form. Using complex geometry, Edmond Laguerre first suggested the existence of two isotropic lines through the point that depend on the imaginary unit : Edmond Laguerre (1870) "Sur l’emploi des imaginaires en la géométrie" Oeuvres de Laguerre2: 89 : First system: (y - \beta) = (x - \alpha) i, : Second system: (y - \beta) = -i (x - \alpha) . Laguerre then interpreted these lines as geodesics: :An essential property of isotropic lines, and which can be used to define them, is the following: the distance between any two points of an isotropic line ''situated at a finite distance in the plane'' is zero. In other terms, these lines satisfy the differential equation . On an arbitrary surface one can study ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropic Quadratic Form
In mathematics, a quadratic form over a field ''F'' is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if ''q'' is a quadratic form on a vector space ''V'' over ''F'', then a non-zero vector ''v'' in ''V'' is said to be isotropic if . A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that is quadratic space and ''W'' is a subspace of ''V''. Then ''W'' is called an isotropic subspace of ''V'' if ''some'' vector in it is isotropic, a totally isotropic subspace if ''all'' vectors in it are isotropic, and an anisotropic subspace if it does not contain ''any'' (non-zero) isotropic vectors. The of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces. A quadratic form ''q'' on a finite-dimensional real vector space ''V'' is anisotropic if and only if ''q'' is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropic Manifold
In mathematics, an isotropic manifold is a manifold in which the geometry does not depend on directions. Formally, we say that a Riemannian manifold (M,g) is isotropic if for any point p\in M and unit vectors v,w\in T_pM, there is an isometry \varphi of M with \varphi(p)=p and \varphi_\ast(v)=w. Every connected isotropic manifold is homogeneous, i.e. for any p,q\in M there is an isometry \varphi of M with \varphi(p)=q. This can be seen by considering a geodesic \gamma: ,2to M from p to q and taking the isometry which fixes \gamma(1) and maps \gamma'(1) to -\gamma'(1). Examples The simply-connected space forms (the n-sphere, hyperbolic space, and \mathbb^n) are isotropic. It is not true in general that any constant curvature manifold is isotropic; for example, the flat torus T=\mathbb^2/\mathbb^2 is not isotropic. This can be seen by noting that any isometry of T which fixes a point p\in T must lift to an isometry of \mathbb^2 which fixes a point and preserves \mathbb^2; thus the gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Isotropic Position
In the fields of machine learning, the theory of computation, and random matrix theory, a probability distribution over vectors is said to be in isotropic position if its covariance matrix is equal to the identity matrix. Formal definitions Let D be a distribution over vectors in the vector space \mathbb^n. Then D is in isotropic position if, for vector v sampled from the distribution, \mathbb\, vv^\mathsf = \mathrm. A ''set'' of vectors is said to be in isotropic position if the uniform distribution over that set is in isotropic position. In particular, every orthonormal set of vectors is isotropic. As a related definition, a convex body K in \mathbb^n is called isotropic if it has volume , K, = 1, center of mass at the origin, and there is a constant \alpha > 0 such that \int_K \langle x, y \rangle^2 dx = \alpha^2 , y, ^2, for all vectors y in \mathbb^n; here , \cdot, stands for the standard Euclidean norm. See also * Whitening transformation References * {{cite jour ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropy Representation
In differential geometry, the isotropy representation is a natural linear representation of a Lie group, that is acting on a manifold, on the tangent space to a fixed point. Construction Given a Lie group action (G, \sigma) on a manifold ''M'', if ''G''''o'' is the stabilizer of a point ''o'' (isotropy subgroup at ''o''), then, for each ''g'' in ''G''''o'', \sigma_g: M \to M fixes ''o'' and thus taking the derivative at ''o'' gives the map (d\sigma_g)_o: T_o M \to T_o M. By the chain rule, :(d \sigma_)_o = d (\sigma_g \circ \sigma_h)_o = (d \sigma_g)_o \circ (d \sigma_h)_o and thus there is a representation: :\rho: G_o \to \operatorname(T_o M) given by :\rho(g) = (d \sigma_g)_o. It is called the isotropy representation at ''o''. For example, if \sigma is a conjugation action of ''G'' on itself, then the isotropy representation \rho at the identity element ''e'' is the adjoint representation In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anisotropy
Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties (absorbance, refractive index, conductivity, tensile strength, etc.). An example of anisotropy is light coming through a polarizer. Another is wood, which is easier to split along its grain than across it. Fields of interest Computer graphics In the field of computer graphics, an anisotropic surface changes in appearance as it rotates about its geometric normal, as is the case with velvet. Anisotropic filtering (AF) is a method of enhancing the image quality of textures on surfaces that are far away and steeply angled with respect to the point of view. Older techniques, such as bilinear and trilinear filtering, do not take into account the angle a surface is viewed from, which can result in aliasing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that the coin is fair). Examples of random phenomena include the weather conditions at some future date, the height of a randomly selected person, the fraction of male students in a school, the results of a survey to be conducted, etc. Introduction A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by \Omega, is the set of all possible outcomes of a rando ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]