HOME
*





36-bit
36-bit computers were popular in the early mainframe computer era from the 1950s through the early 1970s. Starting in the 1960s, but especially the 1970s, the introduction of 7-bit ASCII and 8-bit EBCDIC led to the move to machines using 8-bit bytes, with word sizes that were multiples of 8, notably the 32-bit IBM System/360 mainframe and Digital Equipment VAX and Data General MV series superminicomputers. By the mid-1970s the conversion was largely complete, and microprocessors quickly moved from 8-bit to 16-bit to 32-bit over a period of a decade. The number of 36-bit machines rapidly fell during this period, offered largely for backward compatibility purposes running legacy programs. History Prior to the introduction of computers, the state of the art in precision scientific and engineering calculation was the ten-digit, electrically powered, mechanical calculator, such as those manufactured by Friden, Marchant and Monroe. These calculators had a column of keys for each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

UNIVAC 1100/2200 Series
The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with the solid-state successors. Architecture Data formats * Fixed-point, either integer or fraction **Whole word – 36-bit ( ones' complement) **Half word – two 18-bit fields per word (unsigned or ones' complement) **Third word – three 12-bit fields per word (ones' complement) **Quarter word – four 9-bit fields per word (unsigned) **Sixth word – six 6-bit fields per word (unsigned) *Floating point ** Single precision – 36 bits: sign bit, 8-bit characteristic, 27-bit mantissa ** Double precision – 72 bits: sign bit, 11-bit characteristic, 60-bit mantissa * Alphanumeric ** FIELDA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PDP-10
Digital Equipment Corporation (DEC)'s PDP-10, later marketed as the DECsystem-10, is a mainframe computer family manufactured beginning in 1966 and discontinued in 1983. 1970s models and beyond were marketed under the DECsystem-10 name, especially as the TOPS-10 operating system became widely used. The PDP-10's architecture is almost identical to that of DEC's earlier PDP-6, sharing the same 36-bit word length and slightly extending the instruction set (but with improved hardware implementation). Some aspects of the instruction set are unusual, most notably the ''byte'' instructions, which operate on bit fields of any size from 1 to 36 bits inclusive, according to the general definition of a byte as ''a contiguous sequence of a fixed number of bits''. The PDP-10 was found in many university computing facilities and research labs during the 1970s, the most notable being Harvard University's Aiken Computation Laboratory, MIT's AI Lab and Project MAC, Stanford's SAIL, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PDP-6
The PDP-6, short for Programmed Data Processor model 6, is a computer developed by Digital Equipment Corporation (DEC) during 1963 and first delivered in the summer of 1964. It was an expansion of DEC's existing 18-bit systems to use a 36-bit data word, which was at that time a common word size for large machines like IBM mainframes. The system was constructed using the same germanium transistor-based System Module layout as DEC's earlier machines, like the PDP-1 and PDP-4. The system was designed with real-time computing use in mind, not just batch processing as was typical for most mainframes. This made it popular in university settings and its support for the Lisp language made it particularly useful in artificial intelligence labs like Project MAC at MIT. It was also complex, expensive, and unreliable as a result of its use of so many early-model transistors. Only 23 were sold, at prices ranging from $120,000 to $300,000. The lasting influence of the PDP-6 was its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GE-600 Series
The GE-600 series was a family of 36-bit mainframe computers originating in the 1960s, built by General Electric (GE). When GE left the mainframe business the line was sold to Honeywell, which built similar systems into the 1990s as the division moved to Groupe Bull and then NEC. The system is perhaps best known as the hardware used by the Dartmouth Time Sharing System (DTSS) and the Multics operating system. Multics was supported by virtual memory additions made to later versions of the series. Architecture The 600 series used 36-bit words and 18-bit addresses. They had two 36-bit accumulators, eight 18-bit index registers, and one 8-bit exponent register. It supported floating point in both 36-bit single-precision and 2 x 36-bit double precision, the exponent being stored separately, allowing up to 71 bits of precision and one bit being used for the sign. It had an elaborate set of addressing modes, many of which used indirect words, some of which were auto-incrementing o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IBM 700/7000 Series
The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward. Architectures The IBM 700/7000 series has six completely different ways of storing data and instructions: *First scientific (36/18- bit words): 701 (Defense Calculator) *Later scientific (36-bit words, hardware floating-point): 704, 709, 7040, 7044, 7090, 7094 *Commercial (variable-length character strings): 702, 705, 7080 * 1400 series ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Honeywell 6000 Series
The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1970 and continued to develop them under a variety of names for many years. The high-end model was the 6080, with performance approximately 1  MIPS. Smaller models were the 6070, 6060, 6050, 6040, and 6030. In 1973 a low-end 6025 was introduced. The even-numbered models included an ''Enhanced Instruction Set'' feature (EIS), which added decimal arithmetic and storage-to-storage operations to the original word-oriented architecture. In 1973 Honeywell introduced the 6180, a 6000-series machine with addressing modifications to support the Multics operating system. In 1974 Honeywell released the 68/80 which added cache memory in each processor and support for a large (2-8 million word) directly addressable memory. In 1975 the 6000-series ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TX-2
The MIT Lincoln Laboratory TX-2 computer was the successor to the Lincoln TX-0 and was known for its role in advancing both artificial intelligence and human–computer interaction. Wesley A. Clark was the chief architect of the TX-2. Specifications The TX-2 was a transistor-based computer using the then-huge amount of 64 K 36-bit words of magnetic-core memory. The TX-2 became operational in 1958. Because of its powerful capabilities, Ivan Sutherland's revolutionary Sketchpad program was developed for and ran on the TX-2. One of its key features was the ability to directly interact with the computer through a graphical display. The compiler was developed by Lawrence Roberts while he was studying at the MIT Lincoln Laboratory. Relationship with DEC Digital Equipment Corporation was a spin-off of the TX-0 and TX-2 projects. The TX-2 Tape System was a block addressable 1/2" tape developed for the TX-2 by Tom Stockebrand which evolved into LINCtape and DECtape. Role in c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Word (data Type)
In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits in a word (the ''word size'', ''word width'', or ''word length'') is an important characteristic of any specific processor design or computer architecture. The size of a word is reflected in many aspects of a computer's structure and operation; the majority of the registers in a processor are usually word-sized and the largest datum that can be transferred to and from the working memory in a single operation is a word in many (not all) architectures. The largest possible address size, used to designate a location in memory, is typically a hardware word (here, "hardware word" means the full-sized natural word of the processor, as opposed to any other definition used). Documentation for older computers with fixed word size commonly states memory sizes in words ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ASCII
ASCII ( ), abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Because of technical limitations of computer systems at the time it was invented, ASCII has just 128 code points, of which only 95 are , which severely limited its scope. All modern computer systems instead use Unicode, which has millions of code points, but the first 128 of these are the same as the ASCII set. The Internet Assigned Numbers Authority (IANA) prefers the name US-ASCII for this character encoding. ASCII is one of the IEEE milestones. Overview ASCII was developed from telegraph code. Its first commercial use was as a seven-bit teleprinter code promoted by Bell data services. Work on the ASCII standard began in May 1961, with the first meeting of the American Standards Association's (ASA) (now the American National Standards I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


UNIVAC 1103A
The UNIVAC 1103 or ERA 1103, a successor to the UNIVAC 1101, was a computer system designed by Engineering Research Associates and built by the Remington Rand corporation in October 1953. It was the first computer for which Seymour Cray was credited with design work. History Even before the completion of the ''Atlas'' (UNIVAC 1101), the Navy asked Engineering Research Associates to design a more powerful machine. This project became Task 29, and the computer was designated ''Atlas II''. In 1952, Engineering Research Associates asked the Armed Forces Security Agency (the predecessor of the NSA) for approval to sell the ''Atlas II'' commercially. Permission was given, on the condition that several specialized instructions would be removed. The commercial version then became the UNIVAC 1103. Because of security classification, Remington Rand management was unaware of this machine before this. The first commercially sold UNIVAC 1103 was sold to the aircraft manufacturer Convair, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


UNIVAC 1103
The UNIVAC 1103 or ERA 1103, a successor to the UNIVAC 1101, was a computer system designed by Engineering Research Associates and built by the Remington Rand corporation in October 1953. It was the first computer for which Seymour Cray was credited with design work. History Even before the completion of the ''Atlas'' (UNIVAC 1101), the Navy asked Engineering Research Associates to design a more powerful machine. This project became Task 29, and the computer was designated ''Atlas II''. In 1952, Engineering Research Associates asked the Armed Forces Security Agency (the predecessor of the NSA) for approval to sell the ''Atlas II'' commercially. Permission was given, on the condition that several specialized instructions would be removed. The commercial version then became the UNIVAC 1103. Because of security classification, Remington Rand management was unaware of this machine before this. The first commercially sold UNIVAC 1103 was sold to the aircraft manufacturer Convair, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Six-bit Character Code
A six-bit character code is a character encoding designed for use on computers with word lengths a multiple of 6. Six bits can only encode 64 distinct characters, so these codes generally include only the upper-case letters, the numerals, some punctuation characters, and sometimes control characters. The 7-track magnetic tape format was developed to store data in such codes, along with an additional parity bit. Types of six-bit codes An early six-bit binary code was used for Braille, the reading system for the blind that was developed in the 1820s. The earliest computers dealt with numeric data only, and made no provision for character data. Six-bit BCD, with several variants, was used by IBM on early computers such as the IBM 702 in 1953 and the IBM 704 in 1954. Six-bit encodings were replaced by the 8-bit EBCDIC code starting in 1964, when System/360 standardized on 8-bit bytes. There are some variants of this type of code (see below). Six-bit character codes generally succee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]