HOME

TheInfoList



OR:

Valley networks are branching networks of valleys on
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
that superficially resemble terrestrial
river A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases, a river flows into the ground and becomes dry at the end of its course without reaching another body of ...
drainage basin A drainage basin is an area of land where all flowing surface water converges to a single point, such as a river mouth, or flows into another body of water, such as a lake or ocean. A basin is separated from adjacent basins by a perimeter, ...
s.Carr, M.H. (2006), The Surface of Mars. Cambridge Planetary Science Series, Cambridge University Press. They are found mainly
incised Incision may refer to: * Cutting, the separation of an object, into two or more portions, through the application of an acutely directed force * A type of open wound caused by a clean, sharp-edged object such as a knife, razor, or glass splinter * ...
into the terrain of the martian southern highlands, and are typically - though not always - of Noachian age (approximately four billion years old). The individual valleys are typically less than 5 kilometers wide, though they may extend for up to hundreds or even thousands of kilometers across the martian surface. The form, distribution, and implied evolution of the valley networks are of great importance for what they may tell us about the history of liquid water on the martian surface, and hence Mars'
climate Climate is the long-term weather pattern in an area, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorologi ...
history. Some authors have argued that the properties of the networks demand that a
hydrological cycle The water cycle, also known as the hydrologic cycle or the hydrological cycle, is a biogeochemical cycle that describes the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly const ...
must have been active on ancient Mars,Craddock, R.A., and Howard, A.D. (2002), The case for rainfall on a warm, wet early Mars, J. Geophys. Res., 107(E11), though this remains contentious.Malin, M.C., and Carr, M.H. (1999), Groundwater formation of martian valleys, Nature, 397, 589-592 Objections chiefly arise from repeated results from models of martian paleoclimate suggesting high enough temperatures and pressures to sustain liquid water on the surface have not ever been possible on Mars.Haberle, R.M. (1998), Early Climate Models, J. Geophys. Res., 103(E12),28467-79. The advent of very high resolution images of the surface from the
HiRISE High Resolution Imaging Science Experiment is a camera on board the '' Mars Reconnaissance Orbiter'' which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction ...
,
THEMIS In Greek mythology and religion, Themis (; grc, Θέμις, Themis, justice, law, custom) is one of the twelve Titan children of Gaia and Uranus, and the second wife of Zeus. She is the goddess and personification of justice, divine order, fai ...
and
Context Context may refer to: * Context (language use), the relevant constraints of the communicative situation that influence language use, language variation, and discourse summary Computing * Context (computing), the virtual environment required to s ...
(CTX) satellite cameras as well as the
Mars Orbital Laser Altimeter 260px, MOLA topographic images of the two hemispheres of Mars. This image appeared on the cover of ''Science'' magazine in May 1999. The Mars Orbiter Laser Altimeter (MOLA) was one of five instruments on the ''Mars Global Surveyor'' (MGS) spacecraf ...
(MOLA) digital terrain models have drastically improved our understanding of the networks in the last decade.


Form

The valleys of the networks are typically narrow (<0.5–4 km) and 50–200 m deep, with neither value changing consistently along their lengths. Their cross-sectional form tends to evolve from V-shaped in the headwaters to U-shaped in the lower reaches. The individual valleys form interconnected branching networks, typically less than 200 km long and draining into local topographic lows. The form of the tributary valleys is commonly described as "stubby" or a similar term, implying short lengths away from the trunk streams and amphitheater-like terminations at their heads. Many authors have described the drainage density of the networks as typically much lower than would be seen on Earth, though the extent to which this may be an artifact of image resolution, landscape degradation or observer bias has also been raised in the literature. However, more recent imagery has also emphasized that the term "valley network" incorporates a large variety of different valley forms across a number of different scales in different martian geological settings. Any branched valley system on a scale smaller than an outflow channel can be termed a valley network, probably incorporating a large variety of
geomorphological Geomorphology (from Ancient Greek: , ', "earth"; , ', "form"; and , ', "study") is the scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or ...
formation processes. Some valley networks run for over 2000 km across the martian landscape. Some may change width downstream. Some have drainage densities which do match some terrestrial values. Narrower, less deep valley networks are present, but probably are more rare than their larger equivalents. In most valley networks, later
aeolian processes Aeolian processes, also spelled eolian, pertain to wind activity in the study of geology and weather and specifically to the wind's ability to shape the surface of the Earth (or other planets). Winds may erode, transport, and deposit mate ...
have deposited wind-blown sediments in the bottoms of the valleys, obscuring the nature of the channel which must have cut them. On Earth, a valley is a depression with a flat floor, across which migrates a channel, which carries the water discharge. Due to the later deposits on Mars, however, in almost all cases it is unclear whether the valley floors contain individual channel structures or whether they are fully inundated in flow events.
Nanedi Valles The Nanedi Valles are a set of channels in a large valley in the Lunae Palus quadrangle of Mars, located at 4.9° N and 49.0° W. They are 508 km long and were named for the word for "planet" in Sesotho, the national language of Lesotho, Afr ...
is a rare example where a channel has been identified, though new higher resolution imagery again continues to reveal more such structures with time. This accounts for the preference in the literature for the term "valley network" rather than "channel network", though some work tends to confuse the two in interpretation of these structures.


Distribution and Age

Valley networks are very strongly concentrated in the cratered southern uplands of Mars. The
Hesperian The Hesperian is a system (stratigraphy), geologic system and geologic timescale, time period on the planet Mars characterized by widespread Volcanology of Mars, volcanic activity and catastrophic flooding that carved immense outflow channels acr ...
-age
lava Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or ...
plains of the northern hemisphere are in general almost entirely undissected. However, there are significant numbers of exceptions to this generalization - in particular, many of the Hesperian and younger
volcanoes A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates a ...
carry networks, as well as several other areas. These valleys also appear qualitatively "fresher" and less degraded than those in the highlands (e.g., Nanedi Vallis). However, at finer scales than this the distribution of the valleys where present is highly patchy and discontinuous. Within the highlands, it is not unusual to find heavily dissected slopes immediately adjacent to almost entirely unmodified surfaces, both at valley and catchment scales. The valleys are also regionally clustered, with little dissection in Northwest
Arabia The Arabian Peninsula, (; ar, شِبْهُ الْجَزِيرَةِ الْعَرَبِيَّة, , "Arabian Peninsula" or , , "Island of the Arabs") or Arabia, is a peninsula of Western Asia, situated northeast of Africa on the Arabian Pl ...
and southwest and southeast of Hellas, but much in Terra Cimmeria and just south of the equator from 20°E to 180°E. They are also much more prominent on steeper slopes, for example on crater rims, but again may only be present on one side of such a rim. Unfortunately, the generally small size of individual catchments and the relative narrowness of their constituent valleys means that dating the valley networks by conventional crater counting techniques is extremely difficult (though not impossibleDohm, J.M., and Scott, D.H. (1993), Relation between ages and elevation of martian channels (abstract), Lunar Planet. Sci., XXIV, 407– 408). The concentration of the valleys in the Noachian-age southern highlands and their sparsity on the northern Hesperian plains, circumstantially combined with independent estimates of a multi-order of magnitude decrease in global martian erosion rates at the end of the Noachian, probably indicates that most of the networks were cut during this early interval. However, the channels on Hesperian surfaces unambiguously demonstrate that valley-forming processes did continue at least in some locations at least some of the time after the Noachian. Some crater counting evidence even suggests some highland networks may have formed in the Amazonian.


Formation and implications for martian climate history

Mechanisms and implied environments for the formation of the valleys remain contentious. Processes as diverse as glaciation, mass wasting, faulting, and erosion by , wind and lava have all been invoked at some point in the formation of some networks, and may play important roles locally in some regions on Mars. Most authors however agree that liquid water must have played a role in the formation of the bulk of the valleys, largely on the basis of both the known widespread distribution of ice on Mars and also the physical properties of liquid water (e.g.,
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
) that almost uniquely allow it to flow thousands of kilometers downhill as streams. Channel features on what are interpreted as eroded deltas at the foot of some networks (e.g., in Eberswalde crater) are also uniquely associated with formation by flowing water - for example, meandering, sinuous channels with meander cutoffs, which have internally consistent hydraulic geometries corresponding very closely to what would be expected in fluvial channels on Earth. Independent lines of evidence also suggest the existence of liquid water at or very near the surface at various times in martian history, for example,
evaporites An evaporite () is a water-soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as ocean ...
at
Meridiani Planum The Meridiani Planum (alternately Meridiani plain, Meridiani plains, Terra Meridiani, or Terra Meridiani plains) is either a large plain straddling the equator of Mars and covered with a vast number of spherules containing a lot of iron oxide or ...
and pervasive aqueous alteration of rocks in the Columbia Hills, both investigated by the Mars Exploration Rovers. Beyond this, there are several different scenarios that have been advanced to account for the form and distribution in both space and time of the valleys. Each has its own set of implications regarding the paleoclimate of Mars at the time of formation of the networks. Some of these are summarized below. It is also worth emphasizing that, as on Earth, different formation mechanisms are likely to operate at different times and places on the surface of Mars. In August 2020 scientists reported that valley networks in the southern highlands of
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
may have been formed mostly under glaciers, not free-flowing rivers of water, indicating that early Mars was colder than thought and that extensive glaciation likely occurred in its past.


1. Business as usual, groundwater under ice: ''Cold, dry Mars''

This scenario seeks to describe the formation of the valley networks without appeal to conditions or processes different from those already known to exist on Mars today. Modeling indicates that seeps of groundwater could occur on the surface even under modern conditions, but will freeze very quickly. However, under this suggestion ice cover could insulate the water flowing beneath it well enough to allow long-distance transport (and associated erosion), much like a
lava tube A lava tube, or pyroduct, is a natural conduit formed by flowing lava from a volcanic vent that moves beneath the hardened surface of a lava flow. If lava in the tube empties, it will leave a cave. Formation A lava tube is a type of lava ...
insulates the molten lava inside it. The valleys typically have many features that on Earth are commonly (though not exclusively) associated with groundwater sapping - for instance, amphitheater-like headwalls, constant valley width downstream, flat or U-shaped floors and steep walls. However, without some recharge mechanism for the putative aquifers producing this seepage, i.e., a hydrologic cycle of some kind, it is extremely unlikely that enough water could seep to cut all of the valleys formed in the Noachian. In spite of this, this basic model may remain useful in understanding the more limited valleys formed later in the Hesperian and Amazonian.


2. Groundwater sources, hydrological cycle: ''Cold, wet Mars''

These models expand upon the cold, dry Mars model by envisioning mechanisms whereby subsurface aquifers providing groundwater might be recharged in early Mars history. They thus require a sustained water cycle of some sort on the long term in the Noachian, but do not explicitly require that this water be liquid or fall as
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
. This means Mars need not be warm (i.e., above freezing) in its early history, in accordance with current climate models.


Global groundwater circulation

It has been proposed that the
aquifer An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials ( gravel, sand, or silt). Groundwater from aquifers can be extracted using a water well. Aquifers vary greatly in their characte ...
s could be recharged on geological time scales by a sequence of sublimation of the frozen seeps, atmospheric circulation of the vapor to the southern polar ice cap, redeposition of this onto the cap, basal melting under the ice mass, and groundwater circulation on a global scale. This mechanism is appealing as it requires little conjecture about radically different past climate, and fits well with independent theories on the origins of the martian outflow channels at
chaos terrain In astrogeology, chaos terrain, or chaotic terrain, is a planetary surface area where features such as ridges, cracks, and plains appear jumbled and enmeshed with one another. Chaos terrain is a notable feature of the planets Mars and Mercury, Ju ...
s as major aquifer breaches. However, the
hydrostatic head When generating hydropower, the head is the distance that a given water source has to fall before the point where power is generated. Ultimately the force responsible for hydropower is gravity, so a hydroelectricity plant with a tall/high head can ...
supplied by this mechanism could not feed the numerous channels at elevations greater than the base of the southern polar cap.


Local groundwater circulation

A related model suggests that locally generated heat could produce local scale groundwater seepage and recharge, either by intrusive volcanism or impact heating. However, this version struggles to explain the longer, larger valley networks - if water flows hundreds or thousands of kilometers away from the heat source, ground will again be frozen and recharge will not be possible once again.


3. Full active hydrological cycle: ''Warm, wet Mars''

Many of the Noachian valley networks have features strongly indicative of an origin from distributed precipitation: branched networks, valleys starting at narrow crests, V-shaped cross profiles, diffusional behavior of hillslopes. Conversely, using only geomorphic evidence, it is very challenging to build a strong argument against origin by precipitation. Precipitation also provides a straightforward recharge mechanism for subsurface aquifers, which doubtlessly do exist and are important in some cases (as on Earth). This precipitation may have occurred as
rain Rain is water droplets that have condensed from atmospheric water vapor and then fall under gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water f ...
or
snow Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughou ...
(with subsequent melt on the ground), but either demands a significantly more humid, and thus warmer and thicker, atmosphere than presently exists. A warmer, wetter Noachian is also supported by independent observations of rock weathering rates, Noachian-age
crater lake Crater Lake ( Klamath: ''Giiwas'') is a volcanic crater lake in south-central Oregon in the western United States. It is the main feature of Crater Lake National Park and is famous for its deep blue color and water clarity. The lake partly fill ...
s, and Noachian geology at the lander sites. The chief difficulty with this model is that martian climate simulations have difficulty reliably simulating a warm, wet Noachian, largely due to the distance between the sun and Mars compared to the Earth, and the inferred weaker Sun in the early solar system. Furthermore, a CO2-H2O greenhouse atmosphere to warm the climate should have left extensive deposits of
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
rocks, which have not been found. Problems also exist with sustaining such an atmosphere for long enough to allow the valleys to form, as the unweathered basalts so prevalent on Mars should form extremely effective
carbon sink A carbon sink is anything, natural or otherwise, that accumulates and stores some carbon-containing chemical compound for an indefinite period and thereby removes carbon dioxide () from the atmosphere. Globally, the two most important carbon si ...
s, especially if the surface is wet, and continuing impacts from space in Mars' early history should quickly strip any atmosphere away. Solutions to this apparent contradiction may include exotic mechanisms that do not require a sustained CO2-H2O greenhouse, such as episodic heating due to volcanism or impacts. Other possibilities (other than misinterpretation of the geology and geomorphology) are defects in the physics of, or boundary conditions for, the climate models - a stronger Sun than current theory predicts, defective assumptions about trace (but powerful) greenhouse gases, or failings in the parameterization of CO2 clouds. However, it is possible that additional trace gases, together with CO2, could have solved this paradox. Ramirez et al.(2014) had shown that a CO2-H2 greenhouse would be strong enough to produce the above-freezing temperatures necessary for valley formation. This CO2-H2 greenhouse has been subsequently found to be even more effective than originally demonstrated in Ramirez et al. (2014), with warm solutions possible at hydrogen concentrations and CO2 pressures as low as 1% and 0.55 bar, respectively.Ramirez, R.M. (2017) A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus, 297, 71-82


References


External links


Video (04:32) - Evidence: Water "Vigorously" Flowed On Mars - September, 2012
{{Portal bar, Solar System Surface features of Mars * Water on Mars