HOME

TheInfoList



OR:

In
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has sinc ...
and
computational complexity theory In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved ...
, an undecidable problem is a
decision problem In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whe ...
for which it is proved to be impossible to construct an
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
that always leads to a correct yes-or-no answer. The
halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a ...
is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run.


Background

A decision problem is any arbitrary yes-or-no question on an infinite set of inputs. Because of this, it is traditional to define the decision problem equivalently as the set of inputs for which the problem returns ''yes''. These inputs can be natural numbers, but also other values of some other kind, such as strings of a
formal language In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of sym ...
. Using some encoding, such as a
Gödel numbering In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of h ...
, the strings can be encoded as natural numbers. Thus, a decision problem informally phrased in terms of a formal language is also equivalent to a set of
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
. To keep the formal definition simple, it is phrased in terms of subsets of the natural numbers. Formally, a decision problem is a subset of the natural numbers. The corresponding informal problem is that of deciding whether a given number is in the set. A decision problem ''A'' is called decidable or effectively solvable if ''A'' is a recursive set and undecidable otherwise. A problem is called partially decidable, semi-decidable, solvable, or provable if ''A'' is a
recursively enumerable set In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that th ...
.


Example: the halting problem in computability theory

In
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has sinc ...
, the
halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a ...
is a
decision problem In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whe ...
which can be stated as follows: :Given the description of an arbitrary
program Program, programme, programmer, or programming may refer to: Business and management * Program management, the process of managing several related projects * Time management * Program, a part of planning Arts and entertainment Audio * Programm ...
and a finite input, decide whether the program finishes running or will run forever.
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical ...
proved in 1936 that a general
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
running on a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer alg ...
that solves the halting problem for ''all'' possible program-input pairs necessarily cannot exist. Hence, the halting problem is ''undecidable'' for Turing machines.


Relationship with Gödel's incompleteness theorem

The concepts raised by Gödel's incompleteness theorems are very similar to those raised by the halting problem, and the proofs are quite similar. In fact, a weaker form of the First Incompleteness Theorem is an easy consequence of the undecidability of the halting problem. This weaker form differs from the standard statement of the incompleteness theorem by asserting that an
axiomatization In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contai ...
of the natural numbers that is both complete and
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
is impossible. The "sound" part is the weakening: it means that we require the axiomatic system in question to prove only ''true'' statements about natural numbers. Since soundness implies consistency, this weaker form can be seen as a
corollary In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another ...
of the strong form. It is important to observe that the statement of the standard form of Gödel's First Incompleteness Theorem is completely unconcerned with the truth value of a statement, but only concerns the issue of whether it is possible to find it through a
mathematical proof A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every pr ...
. The weaker form of the theorem can be proved from the undecidability of the halting problem as follows. Assume that we have a sound (and hence consistent) and complete
axiomatization In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contai ...
of all true first-order logic statements about
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s. Then we can build an algorithm that enumerates all these statements. This means that there is an algorithm ''N''(''n'') that, given a natural number ''n'', computes a true first-order logic statement about natural numbers, and that for all true statements, there is at least one ''n'' such that ''N''(''n'') yields that statement. Now suppose we want to decide if the algorithm with representation ''a'' halts on input ''i''. We know that this statement can be expressed with a first-order logic statement, say ''H''(''a'', ''i''). Since the axiomatization is complete it follows that either there is an ''n'' such that ''N''(''n'') = ''H''(''a'', ''i'') or there is an ''n''' such that ''N''(''n''') = ¬ ''H''(''a'', ''i''). So if we iterate over all ''n'' until we either find ''H''(''a'', ''i'') or its negation, we will always halt, and furthermore, the answer it gives us will be true (by soundness). This means that this gives us an algorithm to decide the halting problem. Since we know that there cannot be such an algorithm, it follows that the assumption that there is a consistent and complete axiomatization of all true first-order logic statements about natural numbers must be false.


Examples of undecidable problems

Undecidable problems can be related to different topics, such as
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from prem ...
, abstract machines or
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
. Since there are uncountably many undecidable problems, any list, even one of infinite length, is necessarily incomplete.


Examples of undecidable statements

There are two distinct senses of the word "undecidable" in contemporary use. The first of these is the sense used in relation to Gödel's theorems, that of a statement being neither provable nor refutable in a specified deductive system. The second sense is used in relation to
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has sinc ...
and applies not to statements but to
decision problem In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whe ...
s, which are countably infinite sets of questions each requiring a yes or no answer. Such a problem is said to be undecidable if there is no computable function that correctly answers every question in the problem set. The connection between these two is that if a decision problem is undecidable (in the recursion theoretical sense) then there is no consistent, effective
formal system A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A fo ...
which proves for every question ''A'' in the problem either "the answer to ''A'' is yes" or "the answer to ''A'' is no". Because of the two meanings of the word undecidable, the term
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independe ...
is sometimes used instead of undecidable for the "neither provable nor refutable" sense. The usage of "independent" is also ambiguous, however. It can mean just "not provable", leaving open whether an independent statement might be refuted. Undecidability of a statement in a particular deductive system does not, in and of itself, address the question of whether the
truth value In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Computing In some pro ...
of the statement is well-defined, or whether it can be determined by other means. Undecidability only implies that the particular deductive system being considered does not prove the truth or falsity of the statement. Whether there exist so-called "absolutely undecidable" statements, whose truth value can never be known or is ill-specified, is a controversial point among various philosophical schools. One of the first problems suspected to be undecidable, in the second sense of the term, was the word problem for groups, first posed by Max Dehn in 1911, which asks if there is a finitely presented group for which no algorithm exists to determine whether two words are equivalent. This was shown to be the case in 1952. The combined work of Gödel and Paul Cohen has given two concrete examples of undecidable statements (in the first sense of the term): The continuum hypothesis can neither be proved nor refuted in ZFC (the standard axiomatization of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
), and the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
can neither be proved nor refuted in ZF (which is all the ZFC axioms ''except'' the axiom of choice). These results do not require the incompleteness theorem. Gödel proved in 1940 that neither of these statements could be disproved in ZF or ZFC set theory. In the 1960s, Cohen proved that neither is provable from ZF, and the continuum hypothesis cannot be proven from ZFC. In 1970, Russian mathematician Yuri Matiyasevich showed that
Hilbert's Tenth Problem Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm which, for any given Diophantine equation (a polynomial equ ...
, posed in 1900 as a challenge to the next century of mathematicians, cannot be solved. Hilbert's challenge sought an algorithm which finds all solutions of a
Diophantine equation In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a ...
. A Diophantine equation is a more general case of Fermat's Last Theorem; we seek the integer roots of a
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
in any number of variables with integer coefficients. Since we have only one equation but ''n'' variables, infinitely many solutions exist (and are easy to find) in the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
; however, the problem becomes impossible if solutions are constrained to integer values only. Matiyasevich showed this problem to be unsolvable by mapping a Diophantine equation to a
recursively enumerable set In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that th ...
and invoking Gödel's Incompleteness Theorem. In 1936,
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical ...
proved that the
halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a ...
—the question of whether or not a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer alg ...
halts on a given program—is undecidable, in the second sense of the term. This result was later generalized by Rice's theorem. In 1973,
Saharon Shelah Saharon Shelah ( he, שהרן שלח; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, ...
showed the Whitehead problem in
group theory In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen ...
is undecidable, in the first sense of the term, in standard set theory. In 1977, Paris and Harrington proved that the Paris-Harrington principle, a version of the Ramsey theorem, is undecidable in the axiomatization of arithmetic given by the
Peano axioms In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly ...
but can be proven to be true in the larger system of second-order arithmetic.
Kruskal's tree theorem In mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. History The theorem was conjectured by Andrew Vázsonyi and proved b ...
, which has applications in computer science, is also undecidable from the Peano axioms but provable in set theory. In fact Kruskal's tree theorem (or its finite form) is undecidable in a much stronger system codifying the principles acceptable on basis of a philosophy of mathematics called predicativism. Goodstein's theorem is a statement about the Ramsey theory of the natural numbers that Kirby and Paris showed is undecidable in Peano arithmetic. Gregory Chaitin produced undecidable statements in algorithmic information theory and proved another incompleteness theorem in that setting. Chaitin's theorem states that for any theory that can represent enough arithmetic, there is an upper bound ''c'' such that no specific number can be proven in that theory to have Kolmogorov complexity greater than ''c''. While Gödel's theorem is related to the liar paradox, Chaitin's result is related to Berry's paradox. In 2007, researchers Kurtz and Simon, building on earlier work by J.H. Conway in the 1970s, proved that a natural generalization of the Collatz problem is undecidable.Kurtz, Stuart A.; Simon, Janos
"The Undecidability of the Generalized Collatz Problem"
in Proceedings of the 4th International Conference on Theory and Applications of Models of Computation, TAMC 2007, held in Shanghai, China in May 2007. .


See also

* Decidability (logic) * Entscheidungsproblem * Proof of impossibility *
Wicked problem In planning and policy, a wicked problem is a problem that is difficult or impossible to solve because of incomplete, contradictory, and changing requirements that are often difficult to recognize. It refers to an idea or problem that cannot be fi ...


References

{{Mathematical logic Computability theory Logic in computer science