HOME

TheInfoList



OR:

The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided into two types according to how this breakdown occurs. In type-I superconductors, superconductivity is abruptly destroyed via a
first order phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
when the strength of the applied field rises above a critical value ''H''c. This type of superconductivity is normally exhibited by pure metals, e.g. aluminium, lead, and mercury. The only alloy known up to now which exhibits type I superconductivity is TaSi2. The
covalent superconductor Covalent superconductors are superconducting materials where the atoms are linked by covalent bonds. The first such material was boron-doped synthetic diamond grown by the high-pressure high-temperature (HPHT) method.L. Boeri, J. Kortus and O. K. ...
SiC:B, silicon carbide heavily doped with boron, is also type-I. Depending on the demagnetization factor, one may obtain an intermediate state. This state, first described by Lev Landau, is a phase separation into macroscopic non-superconducting and superconducting domains forming a
Husimi Q representation The Husimi Q representation, introduced by Kôdi Husimi in 1940, is a quasiprobability distribution commonly used in quantum mechanics to represent the phase space distribution of a quantum state such as light in the phase space formulation. ...
. This behavior is different from
type-II superconductors In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the ...
which exhibit two critical magnetic fields. The first, lower critical field occurs when magnetic flux vortices penetrate the material but the material remains superconducting outside of these microscopic vortices. When the vortex density becomes too large, the entire material becomes non-superconducting; this corresponds to the second, higher critical field. The ratio of the London penetration depth ''λ'' to the superconducting coherence length ''ξ'' determines whether a superconductor is type-I or type-II. Type-I superconductors are those with 0 < ''λ/ξ'' < 1/√2, and type-II superconductors are those with ''λ/ξ'' > 1/√2.


References


See also

* * * * * * * * * {{div col end Superconductivity Magnetism