HOME

TheInfoList



OR:

In chemistry, a transition metal (or transition element) is a
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
in the d-block of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
(groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can use d orbitals as valence orbitals to form chemical bonds. The
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
and
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
elements (the
f-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-bl ...
) are called inner transition metals and are sometimes considered to be transition metals as well. Since they are metals, they are lustrous and have good electrical and thermal conductivity. Most (with the exception of group 11 and group 12) are hard and strong, and have high melting and boiling temperatures. They form compounds in any of two or more different
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
s and bind to a variety of
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
s to form
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as '' ligands'' or complexing agents. M ...
es that are often coloured. They form many useful alloys and are often employed as
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s in elemental form or in compounds such as coordination complexes and
oxides An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
. Most are strongly
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
because of their unpaired d electrons, as are many of their compounds. All of the elements that are
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
near room temperature are transition metals (
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
,
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
and
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
) or inner transition metals (
gadolinium Gadolinium is a chemical element with the symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is only slightly malleable and is a ductile rare-earth element. Gadolinium reacts with atmospheric oxygen ...
). English chemist
Charles Rugeley Bury Charles Rugeley Bury (29 June 1890 – 30 December 1968) was an English physical chemist who proposed an early model of the atom with the arrangement of electrons, which explained their chemical properties, alongside the more dominant model of Nie ...
(1890–1968) first used the word ''transition'' in this context in 1921, when he referred to a ''transition series of elements'' during the change of an inner layer of electrons (for example ''n'' = 3 in the 4th row of the periodic table) from a stable group of 8 to one of 18, or from 18 to 32. These elements are now known as the d-block.


Definition and classification

The 2011 IUPAC ''Principles of Chemical Nomenclature'' describe a "transition metal" as any element in groups 3 to 12 on the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
. This corresponds exactly to the d-block elements, and many scientists use this definition. In actual practice, the
f-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-bl ...
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
and
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
series are called "inner transition metals". The 2005 ''Red Book'' allows for the group 12 elements to be excluded, but not the 2011 ''Principles''. The IUPAC ''Gold Book'' defines a transition metal as "an element whose atom has a partially filled d sub-shell, or which can give rise to
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s with an incomplete d sub-shell", but this definition is taken from an old edition of the ''Red Book'' and is no longer present in the current edition. In the d-block, the atoms of the elements have between zero and ten d electrons. Published texts and periodic tables show variation regarding the heavier members of group 3. They are commonly shown as
lanthanum Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between l ...
and
actinium Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name ''emanium''; the element got its name by being wrongly identified with a substance ...
, but there is significant physical and chemical evidence that this is incorrect, and that the correct elements in those places are lutetium and lawrencium. Some authors prefer to leave the spaces below yttrium blank as a third option, but there is confusion on whether this format implies that group 3 contains only scandium and yttrium, or if it also contains all the lanthanides and actinides; additionally, it creates a 15-element-wide f-block, when quantum mechanics dictates that the f-block should only be 14 elements wide. The form with lutetium and lawrencium in group 3 is supported by a 1988 IUPAC report on physical, chemical, and electronic grounds, and again by a 2021 IUPAC preliminary report as it is the only form that allows simultaneous (1) preservation of the sequence of increasing atomic numbers, (2) a 14-element-wide f-block, and (3) avoidance of the split in the d-block. The group 12 elements
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
,
cadmium Cadmium is a chemical element with the Symbol (chemistry), symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Li ...
, and mercury are sometimes excluded from the transition metals. This is because they have the
electronic configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon atom ...
nbsp;10s2, where the d shell is complete, and they still have a complete d shell in all their known oxidation states. The group 12 elements Zn, Cd and Hg may therefore, under certain criteria, be classed as
post-transition metal The metallic elements in the periodic table located between the transition metals and the chemically weak nonmetallic metalloids have received many names in the literature, such as ''post-transition metals'', ''poor metals'', ''other metals'', ...
s in this case. However, it is often convenient to include these elements in a discussion of the transition elements. For example, when discussing the
crystal field stabilization energy Crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually ''d'' or ''f'' orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used ...
of first-row transition elements, it is convenient to also include the elements
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
and zinc, as both and have a value of zero, against which the value for other transition metal ions may be compared. Another example occurs in the Irving–Williams series of stability constants of complexes. Moreover, Zn, Cd, and Hg can use their d orbitals for bonding even though they are not known in oxidation states that would formally require breaking open the d-subshell, which sets them apart from the p-block elements. The recent (though disputed and so far not reproduced independently) synthesis of mercury(IV) fluoride () has been taken by some to reinforce the view that the group 12 elements should be considered transition metals, but some authors still consider this compound to be exceptional.
Copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
is expected to be able to use its d electrons for chemistry as its 6d subshell is destabilised by strong
relativistic effects Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of ...
due to its very high atomic number, and as such is expected to have transition-metal-like behaviour when it shows higher oxidation states than +2 (which are not definitely known for the lighter group 12 elements). Although meitnerium, darmstadtium, and roentgenium are within the d-block and are expected to behave as transition metals analogous to their lighter congeners
iridium Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density o ...
,
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
, and
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
, this has not yet been experimentally confirmed. Whether
copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
behaves more like mercury or has properties more similar to those of the noble gas
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains th ...
is not clear. Early transition metals are on the left side of the periodic table from group 3 to group 7. Late transition metals are on the right side of the d-block, from group 8 to 11 (and 12 if it is counted as transition metals).


Electronic configuration

The general electronic configuration of the d-block atoms is oble gas''n'' − 1)d0–10''n''s0–2''n''p0–1. Here " oble gas is the configuration of the last
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
preceding the atom in question, and ''n'' is the highest
principal quantum number In quantum mechanics, the principal quantum number (symbolized ''n'') is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers (from 1) making it a discrete variable. A ...
of an occupied orbital in that atom. For example Ti (''Z'' = 22) is in period 4 so that ''n'' = 4, the first 18 electrons have the same configuration of Ar at the end of period 3, and the overall configuration is rd24s2. The period 6 and 7 transition metals also add core (''n'' − 2)f14 electrons, which are omitted from the tables below. The p orbitals are almost never filled in free atoms (the one exception being lawrencium due to relativistic effects that become important at such high ''Z''), but they can contribute to the chemical bonding in transition metal compounds. The Madelung rule predicts that the inner d orbital is filled after the valence-shell s orbital. The typical electronic structure of transition metal atoms is then written as oble gas'n''s2(''n'' − 1)d''m''. This rule is however only approximate – it only holds for some of the transition elements, and only then in the neutral ground states. The d subshell is the next-to-last subshell and is denoted as (''n'' − 1)d subshell. The number of s electrons in the outermost s subshell is generally one or two except palladium (Pd), with no electron in that s sub shell in its ground state. The s subshell in the valence shell is represented as the ''n''s subshell, e.g. 4s. In the periodic table, the transition metals are present in ten groups (3 to 12). The elements in group 3 have an ''n''s2(''n'' − 1)d1 configuration, except for
lawrencium Lawrencium is a synthetic chemical element with the symbol Lr (formerly Lw) and atomic number 103. It is named in honor of Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radio ...
(Lr): its 7s27p1 configuration exceptionally does not fill the 6d orbitals at all. The first transition series is present in the 4th period, and starts after Ca (''Z'' = 20) of group 2 with the configuration rs2, or
scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
(Sc), the first element of group 3 with atomic number ''Z'' = 21 and configuration rs23d1, depending on the definition used. As we move from left to right, electrons are added to the same d subshell till it is complete. Since the electrons added fill the (''n'' − 1)d orbitals, the properties of the d-block elements are quite different from those of s and p block elements in which the filling occurs either in s or in p orbitals of the valence shell. The electronic configuration of the individual elements present in all the d-block series are given below:Miessler, G. L. and Tarr, D. A. (1999) ''Inorganic Chemistry'', 2nd edn, Prentice-Hall, p. 38-39 A careful look at the electronic configuration of the elements reveals that there are certain exceptions to the Madelung rule. For Cr as an example the rule predicts the configuration 3d44s2, but the observed atomic spectra show that the real ground state is 3d54s1. To explain such exceptions, it is necessary to consider the effects of increasing nuclear charge on the orbital energies, as well as the electron–electron interactions including both Coulomb repulsion and exchange energy. The exceptions are in any case not very relevant for chemistry because the energy difference between them and the expected configuration is always quite low. The (''n'' − 1)d orbitals that are involved in the transition metals are very significant because they influence such properties as magnetic character, variable oxidation states, formation of coloured compounds etc. The valence s and p orbitals (''n''s and ''n''p) have very little contribution in this regard since they hardly change in the moving from left to the right in a transition series. In transition metals, there is a greater horizontal similarities in the properties of the elements in a period in comparison to the periods in which the d orbitals are not involved. This is because in a transition series, the valence shell electronic configuration of the elements do not change. However, there are some group similarities as well.


Characteristic properties

There are a number of properties shared by the transition elements that are not found in other elements, which results from the partially filled d shell. These include * the formation of compounds whose colour is due to d–d electronic transitions * the formation of compounds in many oxidation states, due to the relatively low energy gap between different possible oxidation states * the formation of many
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
compounds due to the presence of unpaired d electrons. A few compounds of main-group elements are also paramagnetic (e.g.
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its ...
,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
) Most transition metals can be bound to a variety of
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
, allowing for a wide variety of transition metal complexes.


Coloured compounds

Colour in transition-series metal compounds is generally due to electronic transitions of two principal types. * charge transfer transitions. An electron may jump from a predominantly
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
orbital to a predominantly metal orbital, giving rise to a ligand-to-metal charge-transfer (LMCT) transition. These can most easily occur when the metal is in a high oxidation state. For example, the colour of chromate, dichromate and
permanganate A permanganate () is a chemical compound containing the manganate(VII) ion, , the conjugate base of permanganic acid. Because the manganese atom is in the +7 oxidation state, the permanganate(VII) ion is a strong oxidizing agent. The ion is a ...
ions is due to LMCT transitions. Another example is that
mercuric iodide Mercury(II) iodide is a chemical compound with the molecular formula Hg I2. It is typically produced synthetically but can also be found in nature as the extremely rare mineral coccinite. Unlike the related mercury(II) chloride it is hardly solub ...
, HgI2, is red because of a LMCT transition. A metal-to-ligand charge transfer (MLCT) transition will be most likely when the metal is in a low oxidation state and the ligand is easily reduced. In general charge transfer transitions result in more intense colours than d–d transitions. *d–d transitions. An electron jumps from one
d orbital In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any sp ...
to another. In complexes of the transition metals the d orbitals do not all have the same energy. The pattern of splitting of the d orbitals can be calculated using
crystal field Crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually ''d'' or ''f'' orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used ...
theory. The extent of the splitting depends on the particular metal, its oxidation state and the nature of the ligands. The actual energy levels are shown on
Tanabe–Sugano diagram In coordination chemistry, Tanabe–Sugano diagrams are used to predict absorptions in the ultraviolet (UV), visible and infrared (IR) electromagnetic spectrum of coordination compounds. The results from a Tanabe–Sugano diagram analysis of a ...
s. In
centrosymmetric In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point gr ...
complexes, such as octahedral complexes, d–d transitions are forbidden by the Laporte rule and only occur because of
vibronic coupling Vibronic coupling (also called nonadiabatic coupling or derivative coupling) in a molecule involves the interaction between electronic and nuclear vibrational motion. The term "vibronic" originates from the combination of the terms "vibrational" ...
in which a
molecular vibration A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 1013 Hz to approximately 1014 H ...
occurs together with a d–d transition. Tetrahedral complexes have somewhat more intense colour because mixing d and p orbitals is possible when there is no centre of symmetry, so transitions are not pure d–d transitions. The
molar absorptivity Molar may refer to: *Molar (tooth), a kind of tooth found in mammals *Molar (grape), another name for the Spanish wine grape Listan Negro *Molar (unit), a unit of concentration equal to 1 mole per litre *Molar mass * Molar volume *El Molar, Tarrago ...
(ε) of bands caused by d–d transitions are relatively low, roughly in the range 5-500 M−1cm−1 (where M = mol dm−3). Some d–d transitions are spin forbidden. An example occurs in octahedral, high-spin complexes of
manganese Manganese is a chemical element with the Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of ...
(II), which has a d5 configuration in which all five electron has parallel spins; the colour of such complexes is much weaker than in complexes with spin-allowed transitions. Many compounds of manganese(II) appear almost colourless. The spectrum of shows a maximum molar absorptivity of about 0.04 M−1cm−1 in the
visible spectrum The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called '' visible light'' or simply light. A typical human eye will respond to ...
.


Oxidation states

A characteristic of transition metals is that they exhibit two or more
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
s, usually differing by one. For example, compounds of
vanadium Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer ( pass ...
are known in all oxidation states between −1, such as , and +5, such as . Main-group elements in groups 13 to 18 also exhibit multiple oxidation states. The "common" oxidation states of these elements typically differ by two instead of one. For example, compounds of
gallium Gallium is a chemical element with the Symbol (chemistry), symbol Ga and atomic number 31. Discovered by France, French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in boron group, group 13 of the periodic table and is similar to ...
in oxidation states +1 and +3 exist in which there is a single gallium atom. Compounds of Ga(II) would have an unpaired electron and would behave as a
free radical A daughter category of ''Ageing'', this category deals only with the biological aspects of ageing. Ageing Ailments of unknown cause Biogerontology Biological processes Causes of death Cellular processes Gerontology Life extension Metabo ...
and generally be destroyed rapidly, but some stable radicals of Ga(II) are known. Gallium also has a formal oxidation state of +2 in dimeric compounds, such as , which contain a Ga-Ga bond formed from the unpaired electron on each Ga atom. Thus the main difference in oxidation states, between transition elements and other elements is that oxidation states are known in which there is a single atom of the element and one or more unpaired electrons. The maximum oxidation state in the first row transition metals is equal to the number of valence electrons from
titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion i ...
(+4) up to
manganese Manganese is a chemical element with the Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of ...
(+7), but decreases in the later elements. In the second row, the maximum occurs with
ruthenium Ruthenium is a chemical element with the symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemical ...
(+8), and in the third row, the maximum occurs with
iridium Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density o ...
(+9). In compounds such as and , the elements achieve a stable configuration by covalent bonding. The lowest oxidation states are exhibited in
metal carbonyl Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe c ...
complexes such as (oxidation state zero) and (oxidation state −2) in which the 18-electron rule is obeyed. These complexes are also covalent. Ionic compounds are mostly formed with oxidation states +2 and +3. In aqueous solution, the ions are hydrated by (usually) six water molecules arranged octahedrally.


Magnetism

Transition metal compounds are
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
when they have one or more unpaired d electrons. In octahedral complexes with between four and seven d electrons both
high spin Spin states when describing transition metal coordination complexes refers to the potential spin configurations of the central metal's d electrons. For several oxidation states, metals can adopt high-spin and low-spin configurations. The ambiguity o ...
and low spin states are possible. Tetrahedral transition metal complexes such as are
high spin Spin states when describing transition metal coordination complexes refers to the potential spin configurations of the central metal's d electrons. For several oxidation states, metals can adopt high-spin and low-spin configurations. The ambiguity o ...
because the crystal field splitting is small so that the energy to be gained by virtue of the electrons being in lower energy orbitals is always less than the energy needed to pair up the spins. Some compounds are
diamagnetic Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted ...
. These include octahedral, low-spin, d6 and square-planar d8 complexes. In these cases,
crystal field Crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually ''d'' or ''f'' orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used ...
splitting is such that all the electrons are paired up.
Ferromagnetism Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
occurs when individual atoms are paramagnetic and the spin vectors are aligned parallel to each other in a crystalline material. Metallic iron and the alloy
alnico Alnico is a family of iron alloys which in addition to iron are composed primarily of aluminium (Al), nickel (Ni), and cobalt (Co), hence the acronym ''al-ni-co''. They also include copper, and sometimes titanium. Alnico alloys are ferromagnetic, ...
are examples of ferromagnetic materials involving transition metals.
Antiferromagnetism In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. ...
is another example of a magnetic property arising from a particular alignment of individual spins in the solid state.


Catalytic properties

The transition metals and their compounds are known for their homogeneous and heterogeneous
catalytic Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
activity. This activity is ascribed to their ability to adopt multiple oxidation states and to form complexes.
Vanadium Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer ( pass ...
(V) oxide (in the
contact process The contact process is the current method of producing sulfuric acid in the high concentrations needed for industrial processes. Platinum was originally used as the catalyst for this reaction; however, as it is susceptible to reacting with arsenic ...
), finely divided
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
(in the
Haber process The Haber process, also called the Haber–Bosch process, is an artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today. It is named after its inventors, the German chemists Fritz Haber and ...
), and
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
(in
catalytic hydrogenation Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic ...
) are some of the examples. Catalysts at a solid surface (
nanomaterial-based catalyst Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts ...
s) involve the formation of bonds between reactant molecules and atoms of the surface of the catalyst (first row transition metals utilize 3d and 4s electrons for bonding). This has the effect of increasing the concentration of the reactants at the catalyst surface and also weakening of the bonds in the reacting molecules (the activation energy is lowered). Also because the transition metal ions can change their oxidation states, they become more effective as
catalysts Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
. An interesting type of catalysis occurs when the products of a reaction catalyse the reaction producing more catalyst (
autocatalysis A single chemical reaction is said to be autocatalytic if one of the reaction products is also a catalyst for the same or a coupled reaction.Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and Dynamics'' (2nd ed., Prentice-Hall 199 ...
). One example is the reaction of
oxalic acid Oxalic acid is an organic acid with the systematic name ethanedioic acid and formula . It is the simplest dicarboxylic acid. It is a white crystalline solid that forms a colorless solution in water. Its name comes from the fact that early invest ...
with acidified
potassium permanganate Potassium permanganate is an inorganic compound with the chemical formula KMnO4. It is a purplish-black crystalline salt, that dissolves in water as K+ and , an intensely pink to purple solution. Potassium permanganate is widely used in the c ...
(or manganate (VII)). Once a little Mn2+ has been produced, it can react with MnO4 forming Mn3+. This then reacts with C2O4 ions forming Mn2+ again.


Physical properties

As implied by the name, all transition metals are
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
s and thus conductors of electricity. In general, transition metals possess a high
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
and high
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
s and
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding env ...
s. These properties are due to
metallic bond Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be des ...
ing by delocalized d electrons, leading to cohesion which increases with the number of shared electrons. However the group 12 metals have much lower melting and boiling points since their full d subshells prevent d–d bonding, which again tends to differentiate them from the accepted transition metals. Mercury has a melting point of and is a liquid at room temperature.


See also

* Inner transition element, a name given to any member of the
f-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-bl ...
* Main-group element, an element other than a transition metal *
Ligand field theory Ligand field theory (LFT) describes the bonding, orbital arrangement, and other characteristics of coordination complexes. It represents an application of molecular orbital theory to transition metal complexes. A transition metal ion has nine valen ...
a development of crystal field theory taking covalency into account *
Crystal field theory Crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually ''d'' or ''f'' orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used ...
a model that describes the breaking of degeneracies of electronic orbital states *
Post-transition metal The metallic elements in the periodic table located between the transition metals and the chemically weak nonmetallic metalloids have received many names in the literature, such as ''post-transition metals'', ''poor metals'', ''other metals'', ...
, a metallic element to the right of the transition metals in the periodic table


References

{{Authority control Periodic table