HOME

TheInfoList



OR:

Transgenerational epigenetic inheritance is the transmission of epigenetic markers from one organism to the next (i.e., from parent to child) that affects the traits of offspring without altering the
primary structure Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynth ...
of DNA (i.e. the sequence of nucleotides) —in other words, epigenetically. The less precise term "epigenetic inheritance" may cover both cell–cell and organism–organism information transfer. Although these two levels of epigenetic inheritance are equivalent in
unicellular organism A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms a ...
s, they may have distinct mechanisms and evolutionary distinctions in
multicellular organism A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni ...
s. Environmental factors can induce the epigenetic marks (epigenetic tags) for some epigenetically influenced traits, while some marks are heritable, thus leading some to consider that with epigenetics, modern biology no longer rejects the inheritance of acquired characteristics (Lamarckism) as strongly as it once did.


Epigenetic categories

Four general categories of epigenetic modification are known: # self-sustaining metabolic loops, in which an
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
or
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
product of a gene stimulates transcription of the gene; e.g. ''Wor1'' gene in '' Candida albicans''; # structural templating in which structures are replicated using a template or scaffold structure on the parent; e.g. the orientation and architecture of cytoskeletal structures, cilia and flagella,
prion Prions are misfolded proteins that have the ability to transmit their misfolded shape onto normal variants of the same protein. They characterize several fatal and transmissible neurodegenerative diseases in humans and many other animals. It i ...
s, proteins that replicate by changing the structure of normal proteins to match their own; #
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important ...
marks, in which methyl or acetyl groups bind to DNA
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecu ...
s or
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn a ...
s thereby altering gene expression patterns; e.g. ''Lcyc'' gene in '' Linaria vulgaris'' described below; # RNA silencing, in which small RNA strands interfere ( RNAi) with the transcription of DNA or translation of mRNA; known only from a few studies, mostly in ''
Caenorhabditis elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (r ...
''.


Inheritance of epigenetic marks

Although there are various forms of inheriting epigenetic markers, inheritance of epigenetic markers can be summarized as the dissemination of epigenetic information by means of the germline. Furthermore, epigenetic variation typically takes one of four general forms, though there are other forms that have yet to be elucidated. Currently, self-sustaining feedback loops, spatial templating, chromatin marking, and RNA-mediated pathways modify epigenes of individual cells. Epigenetic variation within multicellular organisms is either endogenous or exogenous. Endogenous is generated by cell–cell signaling (e.g. during cell differentiation early in development), while exogenous is a cellular response to environmental cues.


Removal vs. retention

In sexually reproducing organisms, much of the epigenetic modification within cells is reset during meiosis (e.g. marks at the FLC locus controlling plant vernalization), though some epigenetic responses have been shown to be conserved (e.g. transposon methylation in plants). Differential inheritance of epigenetic marks due to underlying maternal or paternal biases in removal or retention mechanisms may lead to the assignment of epigenetic causation to some parent of origin effects in animals and plants.


Reprogramming

In mammals, epigenetic marks are erased during two phases of the life cycle. Firstly just after fertilization and secondly, in the developing primordial germ cells, the precursors to future gametes. During fertilization the male and female gametes join in different cell cycle states and with different configuration of the genome. The epigenetic marks of the male are rapidly diluted. First, the protamines associated with male DNA are replaced with histones from the female's
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, most of which are acetylated due to either higher abundance of acetylated histones in the female's cytoplasm or through preferential binding of the male DNA to acetylated histones. Second, male DNA is systematically demethylated in many organisms, possibly through 5-hydroxymethylcytosine. However, some epigenetic marks, particularly maternal DNA methylation, can escape this reprogramming; leading to parental imprinting. In the primordial
germ cell Germ or germs may refer to: Science * Germ (microorganism), an informal word for a pathogen * Germ cell, cell that gives rise to the gametes of an organism that reproduces sexually * Germ layer, a primary layer of cells that forms during embr ...
s (PGC) there is a more extensive erasure of epigenetic information. However, some rare sites can also evade erasure of DNA methylation. If epigenetic marks evade erasure during both zygotic and PGC reprogramming events, this could enable transgenerational epigenetic inheritance. Recognition of the importance of epigenetic programming to the establishment and fixation of cell line identity during early embryogenesis has recently stimulated interest in artificial removal of epigenetic programming. Epigenetic manipulations may allow for restoration of
totipotency Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
in
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of ...
s or cells more generally, thus generalizing regenerative medicine.


Retention

Cellular mechanisms may allow for co-transmission of some epigenetic marks. During replication, DNA polymerases working on the leading and lagging strands are coupled by the DNA processivity factor
proliferating cell nuclear antigen Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, wher ...
(PCNA), which has also been implicated in patterning and strand crosstalk that allows for copy fidelity of epigenetic marks. Work on histone modification copy fidelity has remained in the model phase, but early efforts suggest that modifications of new histones are patterned on those of the old histones and that new and old histones randomly assort between the two daughter DNA strands. With respect to transfer to the next generation, many marks are removed as described above. Emerging studies are finding patterns of epigenetic conservation across generations. For instance,
centromeric The centromere links a pair of sister chromatids together during cell division. This constricted region of chromosome connects the sister chromatids, creating a short arm (p) and a long arm (q) on the chromatids. During mitosis, spindle fibers ...
satellites resist demethylation. The mechanism responsible for this conservation is not known, though some evidence suggests that methylation of histones may contribute. Dysregulation of the promoter methylation timing associated with gene expression dysregulation in the embryo was also identified.


Decay

Whereas the mutation rate in a given 100-base gene may be 10−7 per generation, epigenes may "mutate" several times per generation or may be fixed for many generations. This raises the question: do changes in epigene frequencies constitute evolution? Rapidly decaying epigenetic effects on phenotypes (i.e. lasting less than three generations) may explain some of the residual variation in phenotypes after genotype and environment are accounted for. However, distinguishing these short-term effects from the effects of the maternal environment on early
ontogeny Ontogeny (also ontogenesis) is the origination and development of an organism (both physical and psychological, e.g., moral development), usually from the time of fertilization of the egg to adult. The term can also be used to refer to the s ...
remains a challenge.


Contribution to phenotypes

The relative importance of genetic and epigenetic inheritance is subject to debate. Though hundreds of examples of epigenetic modification of phenotypes have been published, few studies have been conducted outside of the laboratory setting. Therefore, the interactions of genes and epigenes with the environment cannot be inferred despite the central role of environment in natural selection. Experimental methodologies for manipulating epigenetic mechanisms are nascent (e.g.) and will need rigorous demonstration before studies explicitly testing the relative contributions of genotype, environment, and epigenotype are feasible.


In plants

Studies concerning transgenerational epigenetic inheritance in plants have been reported as early as the 1950s. One of the earliest and best characterized examples of this is b1 paramutation in maize. The b1 gene encodes a basic helix-loop-helix
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The f ...
that is involved in the
anthocyanin Anthocyanins (), also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart gave the name Anthokyan to a chemical com ...
production pathway. When the b1 gene is expressed, the plant accumulates anthocyanin within its tissues, leading to a purple coloration of those tissues. The B-I allele (for B-Intense) has high expression of b1 resulting in the dark pigmentation of the sheath and husk tissues while the B' (pronounced B-prime) allele has low expression of b1 resulting in low pigmentation in those tissues. When
homozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
B-I parents are crossed to homozygous B', the resultant F1 offspring all display low pigmentation which is due to gene silencing of b1. Unexpectedly, when F1 plants are self-crossed, the resultant F2 generation all display low pigmentation and have low levels of b1 expression. Furthermore, when any F2 plant (including those that are genetically homozygous for B-I) are crossed to homozygous B-I, the offspring will all display low pigmentation and expression of b1. The lack of darkly pigmented individuals in the F2 progeny is an example of
non-Mendelian inheritance Non-Mendelian inheritance is any pattern in which traits do not segregate in accordance with Mendel's laws. These laws describe the inheritance of traits linked to single genes on chromosomes in the nucleus. In Mendelian inheritance, each paren ...
and further research has suggested that the B-I allele is converted to B' via epigenetic mechanisms. The B' and B-I alleles are considered to be epialleles because they are identical at the DNA sequence level but differ in the level of
DNA methylation DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts ...
, siRNA production, and chromosomal interactions within the nucleus. Additionally, plants defective in components of the RNA-directed DNA-methylation pathway show an increased expression of b1 in B' individuals similar to that of B-I, however, once these components are restored, the plant reverts to the low expression state. Although spontaneous conversion from B-I to B' has been observed, a reversion from B' to B-I (green to purple) has never been observed over 50 years and thousands of plants in both greenhouse and field experiments. s Examples of environmentally induced transgenerational epigenetic inheritance in plants has also been reported. In one case, rice plants that were exposed to drought-simulation treatments displayed increased tolerance to drought after 11 generations of exposure and propagation by single-seed descent as compared to non-drought treated plants. Differences in drought tolerance was linked to directional changes in DNA-methylation levels throughout the genome, suggesting that stress-induced heritable changes in DNA-methylation patterns may be important in adaptation to recurring stresses. In another study, plants that were exposed to moderate caterpillar herbivory over multiple generations displayed increased resistance to herbivory in subsequent generations (as measured by caterpillar dry mass) compared to plants lacking herbivore pressure. This increase in herbivore resistance persisted after a generation of growth without any herbivore exposure suggesting that the response was transmitted across generations. The report concluded that components of the RNA-directed DNA-methylation pathway are involved in the increased resistance across generations. Transgenerational epigenetic inheritance has also been observed in polyploid plants. Genetically identical reciprocal F1 hybrid triploids have been shown to display transgenerational epigenetic effects on viable F2 seed development.


In humans

Although genetic inheritance is important when describing
phenotypic In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
outcomes, it cannot entirely explain why offspring resemble their parents. Aside from genes, offspring come to inherit similar environmental conditions established by previous generations. One environment that human offspring commonly share for nine months is the womb. Considering the duration of the fetal stages of development, the environment of the mother’s womb can have long lasting effects on the health of offspring. An example of how the environment within the womb can affect the health of an offspring is the Dutch hunger winter and its causal effect on induced transgenerational epigenetic inherited diseases. A number of studies suggest the existence of transgenerational epigenetic inheritance in humans, which includes the Dutch famine of 1944–45. During the Dutch hunger winter, the offspring born during the famine were smaller than those born the year before the famine. The effects of this famine on development lasted up to two generations. Moreover, the offspring born during the famine were found to have an increased risk of
glucose intolerance Prediabetes is a component of the metabolic syndrome and is characterized by elevated blood sugar levels that fall below the threshold to diagnose diabetes mellitus. It usually does not cause symptoms but people with prediabetes often have obesit ...
in adulthood. Differential DNA methylation has been found in adult female offspring who had been exposed to famine in utero, but it is unknown whether these differences in DNA methylation were passed on to their germline. It is hypothesized that inhibiting the PIM3 gene may have caused slower metabolism in later generations, but causation has not been proven, only correlation. The phenomenon is sometimes referred to as Dutch Hunger Winter Syndrome. Furthermore, the increased rates of metabolic diseases, cardiovascular diseases, and other increased risk factors to the health of F1 and F2 generations during the Dutch hunger winter is a known phenomenon called “ fetal programming,” which is caused by exposure to harmful environmental factors in utero. Another study hypothesized that epigenetic changes on the
Y chromosome The Y chromosome is one of two sex chromosomes (allosomes) in therian mammals, including humans, and many other animals. The other is the X chromosome. Y is normally the sex-determining chromosome in many species, since it is the presence or abs ...
could explain differences in lifespan among the male descendants of
prisoners of war A prisoner of war (POW) is a person who is held captive by a belligerent power during or immediately after an armed conflict. The earliest recorded usage of the phrase "prisoner of war" dates back to 1610. Belligerents hold prisoners of w ...
in the
American Civil War The American Civil War (April 12, 1861 – May 26, 1865; also known by Names of the American Civil War, other names) was a civil war in the United States. It was fought between the Union (American Civil War), Union ("the North") and t ...
. The
Överkalix study The Överkalix study ( sv, Överkalixstudien) was a study conducted on the physiological effects of various environmental factors on transgenerational epigenetic inheritance. The study was conducted utilizing historical records, including harves ...
noted sex-specific effects; a greater
body mass index Body mass index (BMI) is a value derived from the mass ( weight) and height of a person. The BMI is defined as the body mass divided by the square of the body height, and is expressed in units of kg/m2, resulting from mass in kilograms and ...
(BMI) at 9 years in sons, but not daughters, of fathers who began smoking early. The paternal grandfather's food supply was only linked to the mortality RR of grandsons and not granddaughters. The paternal grandmother's food supply was only associated with the granddaughters' mortality risk ratio. When the grandmother had a good food supply was associated with a twofold higher mortality (RR). This transgenerational inheritance was observed with exposure during the slow growth period (SGP). The SGP is the time before the start of
puberty Puberty is the process of physical changes through which a child's body matures into an adult body capable of sexual reproduction. It is initiated by hormonal signals from the brain to the gonads: the ovaries in a girl, the testes in a ...
, when environmental factors have a larger impact on the body. The ancestors' SGP in this study was set between the ages of 9-12 for boys and 8–10 years for girls. This occurred in the SGP of both grandparents, or during the
gestation Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pr ...
period/infant life of the grandmothers, but not during either grandparent's puberty. The father's poor food supply and the mother's good food supply were associated with a lower risk of cardiovascular death. The loss of genetic expression which results in
Prader–Willi syndrome Prader–Willi syndrome (PWS) is a genetic disorder caused by a loss of function of specific genes on chromosome 15. In newborns, symptoms include weak muscles, poor feeding, and slow development. Beginning in childhood, those affected become ...
or
Angelman syndrome Angelman syndrome or Angelman's syndrome (AS) is a genetic disorder that mainly affects the nervous system. Symptoms include a small head and a specific facial appearance, severe intellectual disability, developmental disability, limited to no ...
has in some cases been found to be caused by epigenetic changes (or "epimutations") on both the
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chrom ...
s, rather than involving any genetic
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
. In all 19 informative cases, the epimutations that, together with physiological imprinting and therefore silencing of the other
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chrom ...
, were causing these syndromes were localized on a chromosome with a specific parental and grandparental origin. Specifically, the paternally derived chromosome carried an abnormal maternal mark at the SNURF-SNRPN, and this abnormal mark was inherited from the paternal grandmother. Similarly, epimutations on the
MLH1 DNA mismatch repair protein Mlh1 or MutL protein homolog 1 is a protein that in humans is encoded by the MLH1 gene located on chromosome 3. It is a gene commonly associated with hereditary nonpolyposis colorectal cancer. Orthologs of human MLH ...
gene has been found in two individuals with a phenotype of hereditary nonpolyposis colorectal cancer, and without any frank MLH1 mutation which otherwise causes the disease. The same epimutations were also found on the spermatozoa of one of the individuals, indicating the potential to be transmitted to offspring. In addition to epimutations to the
MLH1 DNA mismatch repair protein Mlh1 or MutL protein homolog 1 is a protein that in humans is encoded by the MLH1 gene located on chromosome 3. It is a gene commonly associated with hereditary nonpolyposis colorectal cancer. Orthologs of human MLH ...
gene, it has been determined that certain cancers, such as
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or ...
, can originate during the fetal stages within the
uterus The uterus (from Latin ''uterus'', plural ''uteri'') or womb () is the organ in the reproductive system of most female mammals, including humans that accommodates the embryonic and fetal development of one or more embryos until birth. The ...
. Furthermore, evidence collected in various studies utilizing model systems (i.e. animals) have found that exposure during parental generations can result in multigenerational and transgenerational inheritance of breast cancer. More recently, studies have discovered a connection between the adaptation of male germinal cells via pre-conception paternal diets and the regulation of breast cancer in developing offspring. More specifically, studies have begun to uncover new data that underscores a relationship between transgenerational epigenetic inheritance of breast cancer and ancestral alimentary components or associated markers, such as birth weight.da Cruz, R. S., Chen, E., Smith, M., Bates, J., & de Assis, S. (2020). Diet and Transgenerational Epigenetic Inheritance of Breast Cancer: The Role of the Paternal Germline. Frontiers in nutrition, 7, 93. https://doi.org/10.3389/fnut.2020.0009 By utilizing model systems, such as mice, studies have shown that stimulated paternal obesity at the time of conception can epigenetically alter the paternal germ-line. The paternal germ-line is responsible for regulating their daughters’ weight at birth and the potential for their daughter to develop breast cancer. Furthermore, it was found that modifications to the miRNA expression profile of the male germline is coupled with elevated body weight. Additionally, paternal obesity resulted in an increase in the percentage of female offspring developing
carcinogen A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis (the formation of cancer). This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive sub ...
-induced mammary tumors, which is caused by changes to mammary miRNA expression. Aside from cancer related afflictions associated with the effects of transgenerational epigenetic inheritance, transgenerational epigenetic inheritance has recently been implicated in the progression of pulmonary arterial hypertension (PAH). Recent studies have found that transgenerational epigenetic inheritance is likely to be involved in the progression of PAH because current therapies for PAH do not repair the irregular phenotypes associated with this disease. Current treatments for PAH have attempted to correct symptoms of PAH with vasodilators and antithrombotic protectors, but neither has effectively alleviated the complications related to the impaired phenotypes associated with PAH. The inability of vasodilators and antithrombotic protectants to correct PAH suggests that the progression of PAH is dependent upon multiple variables, which is likely to be consequent of transgenerational epigenetic inheritance. Specifically, it is thought that transgenerational epigenetics is linked to the phenotypic changes associated with vascular remodeling. For example, hypoxia during
gestation Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pr ...
may induce transgenerational epigenetic alterations that could prove to be detrimental during the early phases of fetal development and increase the possibility of developing PAH as an adult. Taking the potential effects of transgenerational epigenetics during fetal development into consideration is derived from the fetal origins of adult disease (FOAD) hypothesis, which is related to the concept of fetal programming. Though hypoxic states could induce the transgenerational epigenetic variance associated with PAH, there is strong evidence to support that a variety of maternal risk factors are linked to the eventual progression of PAH. Such maternal risk factors linked to late-onset PAH includes placental dysfunction, hypertension, obesity, and preeclampsia. These maternal risk factors and environmental stressors coupled with transgenerational epigenetic changes can result in prolonged insult to the signaling pathways associated with the vascular development during fetal stages, thus increasing the likelihood of having PAH. One study has shown childhood abuse, which is defined as "sexual contact, severe physical abuse and/or severe neglect," leads to epigenetic modifications of glucocorticoid receptor expression. Glucocorticoid receptor expression plays a vital role in hypothalamic-pituitary-adrenal (HPA) activity. Additionally, animal experiments have shown that epigenetic changes can depend on mother-infant interactions after birth. Furthermore, a recent study investigating the correlations between maternal stress in pregnancy and methylation in teenagers/their mothers has found that children of women who were abused during pregnancy were more likely to have methylated glucocorticoid-receptor genes. Thus, children with methylated glucocorticoid-receptor genes experience an altered response to stress, ultimately leading to a higher susceptibility of experiencing anxiety. Additional studies examining the effects of
diethylstilbestrol Diethylstilbestrol (DES), also known as stilbestrol or stilboestrol, is a nonsteroidal estrogen medication, which is presently rarely used. In the past, it was widely used for a variety of indications, including pregnancy support for those with ...
(DES), which is an
endocrine disruptor Endocrine disruptors, sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds are chemicals that can interfere with endocrine (or hormonal) systems. These disruptions can cause ...
, have found that the grandchildren (third-generation) of women exposed to DES significantly increased the probability of their grandchildren developing
attention-deficit/hyperactivity disorder Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by excessive amounts of inattention, hyperactivity, and impulsivity that are pervasive, impairing in multiple contexts, and otherwise age-inappr ...
(ADHD). This is because women exposed to
endocrine disruptor Endocrine disruptors, sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds are chemicals that can interfere with endocrine (or hormonal) systems. These disruptions can cause ...
s, such as DES, during
gestation Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pr ...
may be linked to multigenerational
neurodevelopmental The development of the nervous system, or neural development (neurodevelopment), refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The fiel ...
deficits. Furthermore, animal studies indicate that endocrine disruptors have a profound impact on germline cells and neurodevelopment. The cause of DES's multigenerational impact is postulated to be the result of biological processes associated with epigenetic reprogramming of the
germline In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
, though this has yet to be determined.


Effects on fitness

Epigenetic inheritance may only affect fitness if it predictably alters a trait under selection. Evidence has been forwarded that environmental stimuli are important agents in the alteration of epigenes. Ironically, Darwinian evolution may act on these neo-Lamarckian acquired characteristics as well as the cellular mechanisms producing them (e.g. methyltransferase genes). Epigenetic inheritance may confer a fitness benefit to organisms that deal with environmental changes at intermediate timescales. Short-cycling changes are likely to have DNA-encoded regulatory processes, as the probability of the offspring needing to respond to changes multiple times during their lifespans is high. On the other end, natural selection will act on populations experiencing changes on longer-cycling environmental changes. In these cases, if epigenetic priming of the next generation is deleterious to fitness over most of the interval (e.g. misinformation about the environment), these genotypes and epigenotypes will be lost. For intermediate time cycles, the probability of the offspring encountering a similar environment is sufficiently high without substantial selective pressure on individuals lacking a genetic architecture capable of responding to the environment. Naturally, the absolute lengths of short, intermediate, and long environmental cycles will depend on the trait, the length of epigenetic memory, and the generation time of the organism. Much of the interpretation of epigenetic fitness effects centers on the hypothesis that epigenes are important contributors to phenotypes, which remains to be resolved.


Deleterious effects

Inherited epigenetic marks may be important for regulating important components of fitness. In plants, for instance, the ''Lcyc'' gene in '' Linaria vulgaris'' controls the symmetry of the flower. Linnaeus first described radially symmetric mutants, which arise when ''Lcyc'' is heavily methylated. Given the importance of floral shape to pollinators, methylation of ''Lcyc'' homologues (e.g. ''CYCLOIDEA'') may have deleterious effects on plant fitness. In animals, numerous studies have shown that inherited epigenetic marks can increase susceptibility to disease. Transgenerational epigenetic influences are also suggested to contribute to disease, especially cancer, in humans. Tumor methylation patterns in gene promoters have been shown to correlate positively with familial history of cancer. Furthermore, methylation of the ''MSH2'' gene is correlated with early-onset colorectal and endometrial cancers.


Putatively adaptive effects

Experimentally demethylated seeds of the
model organism A model organism (often shortened to model) is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workin ...
''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. ''A. thaliana'' is considered a weed; it is found along the shoulders of roads and in disturbed land. A winter ...
'' have significantly higher mortality, stunted growth, delayed flowering, and lower fruit set, indicating that epigenes may increase fitness. Furthermore, environmentally induced epigenetic responses to stress have been shown to be inherited and positively correlated with fitness. In animals, communal nesting changes mouse behavior increasing parental care regimes and social abilities that are hypothesized to increase offspring survival and access to resources (such as food and mates), respectively.


Inheritance of immunity

In 2021, it was shown for the first time how
immunity Immunity may refer to: Medicine * Immunity (medical), resistance of an organism to infection or disease * ''Immunity'' (journal), a scientific journal published by Cell Press Biology * Immune system Engineering * Radiofrequence immunity de ...
is inherited – via epigenetic changes – in mammals (mice).


Macroevolutionary patterns

Inherited epigenetic effects on phenotypes have been well documented in bacteria, protists, fungi, plants, nematodes, and fruit flies. Though no systematic study of epigenetic inheritance has been conducted (most focus on model organisms), there is preliminary evidence that this mode of inheritance is more important in plants than in animals. The early differentiation of animal
germline In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
s is likely to preclude epigenetic marking occurring later in development, while in plants and fungi somatic cells may be incorporated into the germ line. It is thought that transgenerational epigenetic inheritance can enable certain populations to readily adapt to variable environments. Though there are well documented cases of transgenerational epigenetic inheritance in certain populations, there are questions to whether this same form of adaptability is applicable to mammals. More specifically, it is questioned if it applies to humans. As of late, most of the experimental models utilizing mice and limited observations in humans have only found epigenetically inherited traits that are detrimental to the health of both organisms. These harmful traits range from increased risk of disease, such as
cardiovascular disease Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels. CVD includes coronary artery diseases (CAD) such as angina and myocardial infarction (commonly known as a heart attack). Other CVDs include stroke, hea ...
, to premature death. However, this may be based on the premise of limited reporting bias because it is easier to detect negative experimental effects, opposed to positive experimental effects. Furthermore, considerable epigenetic reprogramming necessary for the evolutionary success of germlines and the initial phases of
embryogenesis An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
in mammals may be the potential cause limiting transgenerational inheritance of chromatin marks in mammals.   Life history patterns may also contribute to the occurrence of epigenetic inheritance. Sessile organisms, those with low dispersal capability, and those with simple behavior may benefit most from conveying information to their offspring via epigenetic pathways. Geographic patterns may also emerge, where highly variable and highly conserved environments might host fewer species with important epigenetic inheritance.


Controversies

Humans have long recognized that traits of the parents are often seen in offspring. This insight led to the practical application of selective breeding of plants and animals, but did not address the central question of inheritance: how are these traits conserved between generations, and what causes variation? Several positions have been held in the history of evolutionary thought.


Blending vs. particulate inheritance

Addressing these related questions, scientists during the time of the Enlightenment largely argued for the blending hypothesis, in which parental traits were homogenized in the offspring much like buckets of different colored paint being mixed together. Critics of Charles Darwin's ''On the Origin of Species'', pointed out that under this scheme of inheritance, variation would quickly be swamped by the majority phenotype. In the paint bucket analogy, this would be seen by mixing two colors together and then mixing the resulting color with only one of the parent colors 20 times; the rare variant color would quickly fade. Unknown to most of the European scientific community, the monk Gregor Mendel had resolved the question of how traits are conserved between generations through breeding experiments with pea plants.
Charles Darwin Charles Robert Darwin ( ; 12 February 1809 – 19 April 1882) was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended ...
thus did not know of Mendel's proposed "particulate inheritance" in which traits were not blended but passed to offspring in discrete units that we now call genes. Darwin came to reject the blending hypothesis even though his ideas and Mendel's were not unified until the 1930s, a period referred to as the
modern synthesis Modern synthesis or modern evolutionary synthesis refers to several perspectives on evolutionary biology, namely: * Modern synthesis (20th century), the term coined by Julian Huxley in 1942 to denote the synthesis between Mendelian genetics and ...
.


Inheritance of innate vs. acquired characteristics

In his 1809 book, ''
Philosophie Zoologique ''Philosophie zoologique'' ("Zoological Philosophy, or Exposition with Regard to the Natural History of Animals") is an 1809 book by the French naturalist Jean-Baptiste Lamarck, in which he outlines his pre-Darwinian theory of evolution, part of ...
'',
Jean-Baptiste Lamarck Jean-Baptiste Pierre Antoine de Monet, chevalier de Lamarck (1 August 1744 – 18 December 1829), often known simply as Lamarck (; ), was a French naturalist, biologist, academic, and soldier. He was an early proponent of the idea that biolo ...
recognized that each species experiences a unique set of challenges due to its form and environment. Thus, he proposed that the characters used most often would accumulate a "nervous fluid." Such acquired accumulations would then be transmitted to the individual's offspring. In modern terms, a nervous fluid transmitted to offspring would be a form of epigenetic inheritance.
Lamarckism Lamarckism, also known as Lamarckian inheritance or neo-Lamarckism, is the notion that an organism can pass on to its offspring physical characteristics that the parent organism acquired through use or disuse during its lifetime. It is also calle ...
, as this body of thought became known, was the standard explanation for change in species over time when Charles Darwin and
Alfred Russel Wallace Alfred Russel Wallace (8 January 1823 – 7 November 1913) was a British natural history, naturalist, explorer, geographer, anthropologist, biologist and illustrator. He is best known for independently conceiving the theory of evolution thro ...
co-proposed a theory of evolution by natural selection in 1859. Responding to Darwin and Wallace's theory, a revised neo-Lamarckism attracted a small following of biologists, though the Lamarckian zeal was quenched in large part due to Weismann's famous experiment in which he cut off the tails of mice over several successive generations without having any effect on tail length. Thus the emergent consensus that acquired characteristics could not be inherited became canon.


Revision of evolutionary theory

Non-genetic variation and inheritance, however, proved to be quite common. Concurrent with the 20th-century development of the modern evolutionary synthesis (unifying Mendelian genetics and natural selection), C. H. Waddington (1905-1975) was working to unify
developmental biology Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of st ...
and genetics. In so doing, he adopted the word "epigenetic" to represent the ordered differentiation of embryonic cells into functionally distinct cell types despite having identical primary structure of their DNA. Researchers discussed Waddington's epigenetics sporadically - it became more of a catch-all for puzzling non-genetic heritable characters rather than a concept advancing the body of inquiry. Consequently, the definition of Waddington's word has itself evolved, broadening beyond the subset of developmentally signaled, inherited cell specialization. Some scientists have questioned whether epigenetic inheritance compromises the foundation of the modern synthesis. Outlining the
central dogma of molecular biology The central dogma of molecular biology is an explanation of the flow of genetic information within a biological system. It is often stated as "DNA makes RNA, and RNA makes protein", although this is not its original meaning. It was first stated by ...
,
Francis Crick Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the helical stru ...
succinctly stated, "DNA is held in a configuration by histone so that it can act as a passive template for the simultaneous synthesis of RNA and protein ''None'' of the detailed 'information' is in the histone." However, he closes the article stating, "this scheme ''explains the majority'' of the present experimental results!" Indeed, the emergence of epigenetic inheritance (in addition to advances in the study of evolutionary-development, phenotypic plasticity, evolvability, and systems biology) has strained the current framework of the modern evolutionary synthesis, and prompted the re-examination of previously dismissed evolutionary mechanisms. Furthermore, patterns in epigenetic inheritance and the evolutionary implications of the epigenetic codes in living organisms are connected to both Lamarck's and Darwin's theories of evolution. For example, Lamarck postulated that environmental factors were responsible for modifying phenotypes hereditarily, which supports the constructs that exposure to environmental factors during critical stages of development can result in epimutations in germlines, thus augmenting phenotypic variance. In contrast, Darwin’s theory claimed that natural selection strengthened a populations ability to survive and remain reproductively fit by favoring populations that are able to readily adapt. This theory is consistent with intergenerational plasticity and phenotypic variance resulting from heritable adaptivity. In addition, some epigenetic variability may provide beneficial plasticity, so that certain organisms can adapt to fluctuating environmental conditions. However, the exchange of epigenetic information between generations can result in epigenetic aberrations, which are epigenetic traits that deviate from the norm. Therefore, the offspring of the parental generations may be predisposed to specific diseases and reduced plasticity due to epigenetic aberrations. Though the ability to readily adapt when faced with a new environment may be beneficial to certain populations of species that can quickly reproduce, species with long generational gaps may not benefit from such an ability. If a species with a longer generational gap does not appropriately adapt to the anticipated environment, then the
reproductive fitness Fitness (often denoted w or ω in population genetics models) is the quantitative representation of individual reproductive success. It is also equal to the average contribution to the gene pool of the next generation, made by the same individua ...
of the offspring of that species will be diminished. There has been critical discussion of mainstream evolutionary theory by Edward J Steele, Robyn A Lindley and colleagues, Fred Hoyle and N. Chandra Wickramasinghe, Yongsheng Liu Denis Noble, John Mattick and others that the logical inconsistencies as well as Lamarckian Inheritance effects involving direct DNA modifications, as well as the just described indirect, viz. epigenetic, transmiss'ions, challenge conventional thinking in evolutionary biology and adjacent fields.


See also

*
Contribution of epigenetic modifications to evolution Epigenetics is the study of changes in gene expression that occur via mechanisms such as DNA methylation, histone acetylation, and microRNA modification. When these epigenetic changes are heritable, they can influence evolution. Current research in ...
*
Överkalix study The Överkalix study ( sv, Överkalixstudien) was a study conducted on the physiological effects of various environmental factors on transgenerational epigenetic inheritance. The study was conducted utilizing historical records, including harves ...
* Dutch famine of 1944–45#Legacy * Transgenerational stress inheritance * Epigenetics of anxiety and stress–related disorders


References

{{Evolutionary psychology Epigenetics Extended evolutionary synthesis