HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, specifically in
ring theory In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their r ...
, a torsion element is an element of a
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mo ...
formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element. This terminology is more commonly used for modules over a
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function ** Natural domain of a partial function **Domain of holomorphy of a function * ...
, that is, when the regular elements of the ring are all its nonzero elements. This terminology applies to
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s (with "module" and "submodule" replaced by "
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
" and "
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
"). This is allowed by the fact that the abelian groups are the modules over the ring of
integers An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
(in fact, this is the origin of the terminology, that has been introduced for abelian groups before being generalized to modules). In the case of
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
that are noncommutative, a ''torsion element'' is an element of finite
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of ...
. Contrary to the
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
case, the torsion elements do not form a subgroup, in general.


Definition

An element ''m'' of a
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
''M'' over a ring ''R'' is called a ''torsion element'' of the module if there exists a regular element ''r'' of the ring (an element that is neither a left nor a right
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
) that annihilates ''m'', i.e., In an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
(a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
without zero divisors), every non-zero element is regular, so a torsion element of a module over an integral domain is one annihilated by a non-zero element of the integral domain. Some authors use this as the definition of a torsion element, but this definition does not work well over more general rings. A module ''M'' over a ring ''R'' is called a ''torsion module'' if all its elements are torsion elements, and '' torsion-free'' if zero is the only torsion element. If the ring ''R'' is an integral domain then the set of all torsion elements forms a submodule of ''M'', called the ''torsion submodule'' of ''M'', sometimes denoted T(''M''). If ''R'' is not commutative, T(''M'') may or may not be a submodule. It is shown in that ''R'' is a right
Ore ring In mathematics, especially in the area of algebra known as ring theory, the Ore condition is a condition introduced by Øystein Ore, in connection with the question of extending beyond commutative rings the construction of a field of fractions, o ...
if and only if T(''M'') is a submodule of ''M'' for all right ''R''-modules. Since right Noetherian domains are Ore, this covers the case when ''R'' is a right
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite lengt ...
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function ** Natural domain of a partial function **Domain of holomorphy of a function * ...
(which might not be commutative). More generally, let ''M'' be a module over a ring ''R'' and ''S'' be a multiplicatively closed subset of ''R''. An element ''m'' of ''M'' is called an ''S''-torsion element if there exists an element ''s'' in ''S'' such that ''s'' annihilates ''m'', i.e., In particular, one can take for ''S'' the set of regular elements of the ring ''R'' and recover the definition above. An element ''g'' of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
''G'' is called a ''torsion element'' of the group if it has finite order, i.e., if there is a positive integer ''m'' such that ''g''''m'' = ''e'', where ''e'' denotes the
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
of the group, and ''g''''m'' denotes the product of ''m'' copies of ''g''. A group is called a '' torsion (or periodic) group'' if all its elements are torsion elements, and a if its only torsion element is the identity element. Any
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
may be viewed as a module over the ring Z of integers, and in this case the two notions of torsion coincide.


Examples

# Let ''M'' be a
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fiel ...
over any ring ''R''. Then it follows immediately from the definitions that ''M'' is torsion-free (if the ring ''R'' is not a domain then torsion is considered with respect to the set ''S'' of non-zero-divisors of ''R''). In particular, any
free abelian group In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subse ...
is torsion-free and any
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
over a field ''K'' is torsion-free when viewed as the module over ''K''. # By contrast with example 1, any
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or ma ...
(abelian or not) is periodic and finitely generated. Burnside's problem, conversely, asks whether any finitely generated periodic group must be finite? The answer is "no" in general, even if the period is fixed. # The torsion elements of the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
of a field are its
roots of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in ...
. # In the
modular group In mathematics, the modular group is the projective special linear group of matrices with integer coefficients and determinant 1. The matrices and are identified. The modular group acts on the upper-half of the complex plane by fractional ...
, Γ obtained from the group SL(2, Z) of 2×2 integer
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
with unit
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if a ...
by factoring out its center, any nontrivial torsion element either has order two and is conjugate to the element ''S'' or has order three and is conjugate to the element ''ST''. In this case, torsion elements do not form a subgroup, for example, ''S''·''ST'' = ''T'', which has infinite order. # The abelian group Q/Z, consisting of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s modulo 1, is periodic, i.e. every element has finite order. Analogously, the module K(''t'')/K 't''over the ring ''R'' = K 't''of
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
s in one variable is pure torsion. Both these examples can be generalized as follows: if ''R'' is an integral domain and ''Q'' is its
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
, then ''Q''/''R'' is a torsion ''R''-module. # The
torsion subgroup In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group (or ...
of (R/Z, +) is (Q/Z, +) while the groups (R, +) and (Z, +) are torsion-free. The quotient of a
torsion-free abelian group In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only e ...
by a subgroup is torsion-free exactly when the subgroup is a
pure subgroup In mathematics, especially in the area of algebra studying the theory of abelian groups, a pure subgroup is a generalization of direct summand. It has found many uses in abelian group theory and related areas. Definition A subgroup S of a (typic ...
. # Consider a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vect ...
L acting on a
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
vector space V. If we view V as an F ''Lmodule in the natural way, then (as a result of many things, either simply by finite-dimensionality or as a consequence of the
Cayley–Hamilton theorem In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies ...
), V is a torsion F ''Lmodule.


Case of a principal ideal domain

Suppose that ''R'' is a (commutative)
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principa ...
and ''M'' is a finitely generated ''R''-module. Then the
structure theorem for finitely generated modules over a principal ideal domain In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finite ...
gives a detailed description of the module ''M'' up to
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
. In particular, it claims that : M \simeq F\oplus T(M), where ''F'' is a free ''R''-module of finite
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * ...
(depending only on ''M'') and T(''M'') is the torsion submodule of ''M''. As a
corollary In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another ...
, any finitely generated torsion-free module over ''R'' is free. This corollary ''does not'' hold for more general commutative domains, even for ''R'' = K 'x'',''y'' the ring of polynomials in two variables. For non-finitely generated modules, the above direct decomposition is not true. The torsion subgroup of an abelian group may not be a direct summand of it.


Torsion and localization

Assume that ''R'' is a commutative domain and ''M'' is an ''R''-module. Let ''Q'' be the quotient field of the ring ''R''. Then one can consider the ''Q''-module : M_Q = M \otimes_R Q, obtained from ''M'' by
extension of scalars In algebra, given a ring homomorphism f: R \to S, there are three ways to change the coefficient ring of a module; namely, for a left ''R''-module ''M'' and a left ''S''-module ''N'', *f_! M = S\otimes_R M, the induced module. *f_* M = \operatorn ...
. Since ''Q'' is a field, a module over ''Q'' is a vector space, possibly infinite-dimensional. There is a canonical
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
of abelian groups from ''M'' to ''M''''Q'', and the kernel of this homomorphism is precisely the torsion submodule T(''M''). More generally, if ''S'' is a multiplicatively closed subset of the ring ''R'', then we may consider localization of the ''R''-module ''M'', : M_S = M \otimes_R R_S, which is a module over the localization ''R''''S''. There is a canonical map from ''M'' to ''M''''S'', whose kernel is precisely the ''S''-torsion submodule of ''M''. Thus the torsion submodule of ''M'' can be interpreted as the set of the elements that "vanish in the localization". The same interpretation continues to hold in the non-commutative setting for rings satisfying the Ore condition, or more generally for any
right denominator set In mathematics, especially in the area of algebra known as ring theory, the Ore condition is a condition introduced by Øystein Ore, in connection with the question of extending beyond commutative rings the construction of a field of fractions, ...
''S'' and right ''R''-module ''M''.


Torsion in homological algebra

The concept of torsion plays an important role in
homological algebra Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topolo ...
. If ''M'' and ''N'' are two modules over a commutative domain ''R'' (for example, two abelian groups, when ''R'' = Z),
Tor functor In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to co ...
s yield a family of ''R''-modules Tor''i'' (''M'',''N''). The ''S''-torsion of an ''R''-module ''M'' is canonically isomorphic to Tor''R''1(''M'', ''R''''S''/''R'') by the
exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context ...
of Tor''R''*: The short exact sequence 0\to R\to R_S \to R_S/R \to 0 of ''R''-modules yields an exact sequence 0\to\operatorname^R_1(M, R_S/R)\to M\to M_S, hence \operatorname^R_1(M, R_S/R) is the kernel of the localisation map of ''M''. The symbol denoting the
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
s reflects this relation with the algebraic torsion. This same result holds for non-commutative rings as well as long as the set ''S'' is a
right denominator set In mathematics, especially in the area of algebra known as ring theory, the Ore condition is a condition introduced by Øystein Ore, in connection with the question of extending beyond commutative rings the construction of a field of fractions, ...
.


Abelian varieties

The torsion elements of an
abelian variety In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functi ...
are ''torsion points'' or, in an older terminology, ''division points''. On
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. I ...
s they may be computed in terms of
division polynomials In mathematics the division polynomials provide a way to calculate multiples of points on elliptic curves and to study the fields generated by torsion points. They play a central role in the study of counting points on elliptic curves in Schoof's a ...
.


See also

* Analytic torsion * Arithmetic dynamics * Flat module * Annihilator (ring theory) * Localization of a module *
Rank of an abelian group In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group ''A'' is the cardinality of a maximal linearly independent subset. The rank of ''A'' determines the size of the largest free abelian group contained in ''A''. If ''A ...
* Ray–Singer torsion *
Torsion-free abelian group In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only e ...
*
Universal coefficient theorem In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space , its ''integral homology groups'': : completely ...


References

*Ernst Kunz,
Introduction to Commutative algebra and algebraic geometry
, Birkhauser 1985, *
Irving Kaplansky Irving Kaplansky (March 22, 1917 – June 25, 2006) was a mathematician, college professor, author, and amateur musician.O'Connor, John J.; Robertson, Edmund F., "Irving Kaplansky", MacTutor History of Mathematics archive, University of St Andr ...
,
Infinite abelian groups
, University of Michigan, 1954. * * {{DEFAULTSORT:Torsion (Algebra) Abelian group theory Module theory Homological algebra