HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
study of the
differential geometry of surfaces In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspective ...
, a tangent developable is a particular kind of developable surface obtained from a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
as the surface swept out by the
tangent line In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
s to the curve. Such a surface is also the
envelope An envelope is a common packaging item, usually made of thin, flat material. It is designed to contain a flat object, such as a letter or card. Traditional envelopes are made from sheets of paper cut to one of three shapes: a rhombus, a ...
of the tangent planes to the curve.


Parameterization

Let \gamma(t) be a parameterization of a smooth space curve. That is, \gamma is a twice-differentiable function with nowhere-vanishing derivative that maps its argument t (a
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
) to a point in space; the curve is the image of \gamma. Then a two-dimensional surface, the tangent developable of \gamma, may be parameterized by the map :(s,t)\mapsto \gamma(t) + s\gamma(t). The original curve forms a boundary of the tangent developable, and is called its directrix or edge of regression. This curve is obtained by first developing the surface into the plane, and then considering the image in the plane of the generators of the ruling on the surface. The envelope of this family of lines is a plane curve whose inverse image under the development is the edge of regression. Intuitively, it is a curve along which the surface needs to be folded during the process of developing into the plane.


Properties

The tangent developable is a developable surface; that is, it is a surface with zero
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . ...
. It is one of three fundamental types of developable surface; the other two are the generalized cones (the surface traced out by a one-dimensional family of lines through a fixed point), and the cylinders (surfaces traced out by a one-dimensional family of
parallel lines In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. ''Parallel curves'' are curves that do not touch each other or int ...
). (The plane is sometimes given as a fourth type, or may be seen as a special case of either of these two types.) Every developable surface in three-dimensional space may be formed by gluing together pieces of these three types; it follows from this that every developable surface is a
ruled surface In geometry, a surface is ruled (also called a scroll) if through every point of there is a straight line that lies on . Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, t ...
, a union of a one-dimensional family of lines. However, not every ruled surface is developable; the helicoid provides a counterexample. The tangent developable of a curve containing a point of zero torsion will contain a self-intersection.


History

Tangent developables were first studied by
Leonhard Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries ...
in 1772.. Until that time, the only known developable surfaces were the generalized cones and the cylinders. Euler showed that tangent developables are developable and that every developable surface is of one of these types..


Notes


References

*. * * *


External links

* {{DEFAULTSORT:Tangent Developable Differential geometry of surfaces