tangent developable
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
study of the
differential geometry of surfaces In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth manifold, smooth Surface (topology), surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensiv ...
, a tangent developable is a particular kind of
developable surface In mathematics, a developable surface (or torse: archaic) is a smooth surface with zero Gaussian curvature. That is, it is a surface that can be flattened onto a plane without distortion (i.e. it can be bent without stretching or compression). ...
obtained from a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
as the surface swept out by the
tangent line In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
s to the curve. Such a surface is also the
envelope An envelope is a common packaging item, usually made of thin, flat material. It is designed to contain a flat object, such as a letter (message), letter or Greeting card, card. Traditional envelopes are made from sheets of paper cut to one o ...
of the
tangent plane In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
s to the curve.


Parameterization

Let \gamma(t) be a parameterization of a smooth space curve. That is, \gamma is a twice-differentiable function with nowhere-vanishing derivative that maps its argument t (a
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
) to a point in space; the curve is the image of \gamma. Then a two-dimensional surface, the tangent developable of \gamma, may be parameterized by the map :(s,t)\mapsto \gamma(t) + s\gamma(t). The original curve forms a boundary of the tangent developable, and is called its directrix or edge of regression. This curve is obtained by first developing the surface into the plane, and then considering the image in the plane of the generators of the ruling on the surface. The envelope of this family of lines is a plane curve whose inverse image under the development is the edge of regression. Intuitively, it is a curve along which the surface needs to be folded during the process of developing into the plane.


Properties

The tangent developable is a
developable surface In mathematics, a developable surface (or torse: archaic) is a smooth surface with zero Gaussian curvature. That is, it is a surface that can be flattened onto a plane without distortion (i.e. it can be bent without stretching or compression). ...
; that is, it is a surface with zero
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For ...
. It is one of three fundamental types of developable surface; the other two are the generalized cones (the surface traced out by a one-dimensional family of lines through a fixed point), and the cylinders (surfaces traced out by a one-dimensional family of
parallel lines In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. '' Parallel curves'' are curves that do not touch each oth ...
). (The plane is sometimes given as a fourth type, or may be seen as a special case of either of these two types.) Every developable surface in three-dimensional space may be formed by gluing together pieces of these three types; it follows from this that every developable surface is a
ruled surface In geometry, a Differential geometry of surfaces, surface in 3-dimensional Euclidean space is ruled (also called a scroll) if through every Point (geometry), point of , there is a straight line that lies on . Examples include the plane (mathemat ...
, a union of a one-dimensional family of lines. However, not every ruled surface is developable; the
helicoid The helicoid, also known as helical surface, is a smooth Surface (differential geometry), surface embedded in three-dimensional space. It is the surface traced by an infinite line that is simultaneously being rotated and lifted along its Rotation ...
provides a counterexample. The tangent developable of a curve containing a point of zero torsion will contain a self-intersection.


History

Tangent developables were first studied by
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
in 1772.. Until that time, the only known developable surfaces were the generalized cones and the cylinders. Euler showed that tangent developables are developable and that every developable surface is of one of these types..


Notes


References

*. * * *


External links

* {{DEFAULTSORT:Tangent Developable Differential geometry of surfaces