HOME

TheInfoList



OR:

Stellar structure models describe the internal structure of a
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
in detail and make predictions about the
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
, the
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
and the
future evolution ''Future Evolution'' is a book written by paleontologist Peter Ward and illustrated by Alexis Rockman. He addresses his own opinion of future evolution and compares it with Dougal Dixon's '' After Man: A Zoology of the Future'' and H. G. Wells's ...
of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.


Energy transport

Different layers of the stars transport heat up and outwards in different ways, primarily
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
and
radiative transfer Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative trans ...
, but
thermal conduction Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its ''thermal conductivity'', and is denoted . Heat spontaneously flows along a te ...
is important in
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s. Convection is the dominant mode of energy transport when the temperature gradient is steep enough so that a given parcel of gas within the star will continue to rise if it rises slightly via an
adiabatic process In thermodynamics, an adiabatic process (Greek: ''adiábatos'', "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, ...
. In this case, the rising parcel is buoyant and continues to rise if it is warmer than the surrounding gas; if the rising parcel is cooler than the surrounding gas, it will fall back to its original height. In regions with a low temperature gradient and a low enough opacity to allow energy transport via radiation, radiation is the dominant mode of energy transport. The internal structure of a
main sequence In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar He ...
star depends upon the mass of the star. In stars with masses of 0.3–1.5
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es (), including the Sun, hydrogen-to-helium fusion occurs primarily via proton–proton chains, which do not establish a steep temperature gradient. Thus, radiation dominates in the inner portion of solar mass stars. The outer portion of solar mass stars is cool enough that hydrogen is neutral and thus opaque to ultraviolet photons, so convection dominates. Therefore, solar mass stars have radiative cores with convective envelopes in the outer portion of the star. In massive stars (greater than about 1.5 ), the core temperature is above about 1.8×107 K, so
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
-to-
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
fusion occurs primarily via the
CNO cycle The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, ...
. In the CNO cycle, the energy generation rate scales as the temperature to the 15th power, whereas the rate scales as the temperature to the 4th power in the proton-proton chains. Due to the strong temperature sensitivity of the CNO cycle, the temperature gradient in the inner portion of the star is steep enough to make the core
convective Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the ...
. In the outer portion of the star, the temperature gradient is shallower but the temperature is high enough that the hydrogen is nearly fully ionized, so the star remains transparent to ultraviolet radiation. Thus, massive stars have a radiative envelope. The lowest mass main sequence stars have no radiation zone; the dominant energy transport mechanism throughout the star is convection.


Equations of stellar structure

The simplest commonly used model of stellar structure is the spherically symmetric quasi-static model, which assumes that a star is in a
steady state In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties ''p' ...
and that it is spherically symmetric. It contains four basic
first-order differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
s: two represent how
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
and
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
vary with radius; two represent how
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
and
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
vary with radius. In forming the stellar structure equations (exploiting the assumed spherical symmetry), one considers the matter
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
\rho(r), temperature T(r), total pressure (matter plus radiation) P(r), luminosity l(r), and energy generation rate per unit mass \epsilon(r) in a spherical shell of a thickness \mboxr at a distance r from the center of the star. The star is assumed to be in local thermodynamic equilibrium (LTE) so the temperature is identical for matter and
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
s. Although LTE does not strictly hold because the temperature a given shell "sees" below itself is always hotter than the temperature above, this approximation is normally excellent because the photon
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as ...
, \lambda, is much smaller than the length over which the temperature varies considerably, i. e. \lambda \ll T/, \nabla T, . First is a statement of ''
hydrostatic equilibrium In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planeta ...
:'' the outward force due to the pressure gradient within the star is exactly balanced by the inward force due to
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. This is sometimes referred to as stellar equilibrium. : = - , where m(r) is the cumulative mass inside the shell at r and ''G'' is the
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
. The cumulative mass increases with radius according to the '' mass continuity equation:'' : = 4 \pi r^2 \rho . Integrating the mass continuity equation from the star center (r=0) to the radius of the star (r=R) yields the total mass of the star. Considering the energy leaving the spherical shell yields the ''energy equation:'' : = 4 \pi r^2 \rho ( \epsilon - \epsilon_\nu ), where \epsilon_\nu is the luminosity produced in the form of neutrinos (which usually escape the star without interacting with ordinary matter) per unit mass. Outside the core of the star, where nuclear reactions occur, no energy is generated, so the luminosity is constant. The energy transport equation takes differing forms depending upon the mode of energy transport. For conductive energy transport (appropriate for a
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
), the energy equation is : = - , where ''k'' is the
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
. In the case of radiative energy transport, appropriate for the inner portion of a solar mass
main sequence In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar He ...
star and the outer envelope of a massive main sequence star, : = - , where \kappa is the opacity of the matter, \sigma is the Stefan–Boltzmann constant, and the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constan ...
is set to one. The case of convective energy transport does not have a known rigorous mathematical formulation, and involves
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
in the gas. Convective energy transport is usually modeled using
mixing length theory In fluid dynamics, the mixing length model is a method attempting to describe momentum transfer by turbulence Reynolds stresses within a Newtonian fluid boundary layer by means of an eddy viscosity. The model was developed by Ludwig Prandtl in ...
. This treats the gas in the star as containing discrete elements which roughly retain the temperature, density, and pressure of their surroundings but move through the star as far as a characteristic length, called the ''mixing length''. For a
monatomic In physics and chemistry, "monatomic" is a combination of the words "mono" and "atomic", and means "single atom". It is usually applied to gases: a monatomic gas is a gas in which atoms are not bound to each other. Examples at standard conditions ...
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
, when the convection is adiabatic, meaning that the convective gas bubbles don't exchange heat with their surroundings, mixing length theory yields : = \left(1 - \right) , where \gamma = c_p / c_v is the adiabatic index, the ratio of
specific heat In thermodynamics, the specific heat capacity (symbol ) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample, also sometimes referred to as massic heat capacity. Informally, it is the amount of heat t ...
s in the gas. (For a fully ionized
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
, \gamma = 5/3.) When the convection is not adiabatic, the true temperature gradient is not given by this equation. For example, in the Sun the convection at the base of the convection zone, near the core, is adiabatic but that near the surface is not. The mixing length theory contains two free parameters which must be set to make the model fit observations, so it is a phenomenological theory rather than a rigorous mathematical formulation.Ostlie, Dale A. and Carrol, Bradley W.
''An introduction to Modern Stellar Astrophysics''
Addison-Wesley (2007)
Also required are the
equations of state In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or ...
, relating the pressure, opacity and energy generation rate to other local variables appropriate for the material, such as temperature, density, chemical composition, etc. Relevant equations of state for pressure may have to include the perfect gas law, radiation pressure, pressure due to degenerate electrons, etc. Opacity cannot be expressed exactly by a single formula. It is calculated for various compositions at specific densities and temperatures and presented in tabular form. Stellar structure ''codes'' (meaning computer programs calculating the model's variables) either interpolate in a density-temperature grid to obtain the opacity needed, or use a fitting function based on the tabulated values. A similar situation occurs for accurate calculations of the pressure equation of state. Finally, the nuclear energy generation rate is computed from
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies t ...
experiments, using ''reaction networks'' to compute reaction rates for each individual reaction step and equilibrium abundances for each isotope in the gas. Combined with a set of
boundary conditions In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to th ...
, a solution of these equations completely describes the behavior of the star. Typical boundary conditions set the values of the observable parameters appropriately at the surface (r=R) and center (r=0) of the star: P(R) = 0, meaning the pressure at the surface of the star is zero; m(0) = 0, there is no mass inside the center of the star, as required if the mass density remains
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
; m(R) = M, the total mass of the star is the star's mass; and T(R) = T_, the temperature at the surface is the
effective temperature The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature ...
of the star. Although nowadays stellar evolution models describe the main features of color–magnitude diagrams, important improvements have to be made in order to remove uncertainties which are linked to the limited knowledge of transport phenomena. The most difficult challenge remains the numerical treatment of turbulence. Some research teams are developing simplified modelling of turbulence in 3D calculations.


Rapid evolution

The above simplified model is not adequate without modification in situations when the composition changes are sufficiently rapid. The equation of hydrostatic equilibrium may need to be modified by adding a radial acceleration term if the radius of the star is changing very quickly, for example if the star is radially pulsating. Also, if the nuclear burning is not stable, or the star's core is rapidly collapsing, an entropy term must be added to the energy equation.


See also

* Scale height * Standard solar model


References


Sources

* * * * *


External links


opacity code
retrieved November 2009 * Th
Yellow CESAM code
stellar evolution and structure Fortran source code

a FORTRAN 90 software derived from Eggleton's Stellar Evolution Code, a web-based interface can be found her


Geneva Grids of Stellar Evolution Models
(some of them including rotational induced mixing) * Th
BaSTI
database of stellar evolution tracks {{DEFAULTSORT:Stellar Structure Stellar astronomy, Structure