HOME

TheInfoList



OR:

A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. The process is observed as a
hypernova A hypernova (sometimes called a collapsar) is a very energetic supernova thought to result from an extreme core-collapse scenario. In this case, a massive star (>30 solar masses) collapses to form a rotating black hole emitting twin energetic je ...
explosion or as a
gamma ray burst In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten millise ...
. These black holes are also referred to as collapsars.


Properties

By the
no-hair theorem The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent ''externally'' observabl ...
, a black hole can only have three fundamental properties: mass, electric charge, and angular momentum. The angular momentum of a stellar black hole is due to the
conservation of angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syste ...
of the star or objects that produced it. The gravitational collapse of a star is a natural process that can produce a black hole. It is inevitable at the end of the life of a large star when all stellar energy sources are exhausted. If the mass of the collapsing part of the star is below the Tolman–Oppenheimer–Volkoff (TOV) limit for
neutron-degenerate matter Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, neu ...
, the end product is a
compact star In astronomy, the term compact star (or compact object) refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects ha ...
– either a
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
(for masses below the
Chandrasekhar limit The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compa ...
) or a
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
or a (hypothetical)
quark star A quark star is a hypothetical type of compact, exotic star, where extremely high core temperature and pressure has forced nuclear particles to form quark matter, a continuous state of matter consisting of free quarks. Background Some massive ...
. If the collapsing star has a mass exceeding the TOV limit, the crush will continue until zero volume is achieved and a black hole is formed around that point in space. The maximum mass that a neutron star can possess (without becoming a black hole) is not fully understood. In 1939, it was estimated at 0.7 solar masses, called the TOV limit. In 1996, a different estimate put this upper mass in a range from 1.5 to 3 solar masses. The maximum observed mass of neutron stars is about for PSR J0740+6620 discovered in September, 2019. In the theory of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, a black hole could exist of any mass. The lower the mass, the higher the density of matter has to be in order to form a black hole. (See, for example, the discussion in
Schwarzschild radius The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteris ...
, the radius of a black hole.) There are no known processes that can produce black holes with mass less than a few times the mass of the Sun. If black holes that small exist, they are most likely
primordial black hole Primordial black holes (also abbreviated as PBH) are hypothetical black holes that formed soon after the Big Bang. Due to the extreme environment of the newly born universe, extremely dense pockets of sub-atomic matter had been tightly packed t ...
s. Until 2016, the largest known stellar black hole was solar masses. In September 2015, a rotating black hole of solar masses was discovered by
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
as it formed in a merger event of two smaller black holes. , the binary system 2MASS J05215658+4359220 was reported to host the smallest-mass black hole currently known to science, with a mass 3.3 solar masses and a diameter of only 19.5 kilometers. There is observational evidence for two other types of black holes, which are much more massive than stellar black holes. They are
intermediate-mass black hole An intermediate-mass black hole (IMBH) is a class of black hole with mass in the range 102–105 solar masses: significantly more than stellar black holes but less than the 105–109 solar mass supermassive black holes. Several IMBH candidate obje ...
s (in the center of
globular cluster A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of membe ...
s) and
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
s in the center of the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
and other galaxies.


X-ray compact binary systems

Stellar black holes in
close binary A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in wh ...
systems are observable when the matter is transferred from a companion star to the black hole; the energy released in the fall toward the compact star is so large that the matter heats up to temperatures of several hundred million degrees and radiates in
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10 nanometers, corresponding to frequencies in the range 30&nbs ...
. The black hole, therefore, is observable in X-rays, whereas the companion star can be observed with
optical telescopes An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electr ...
. The energy release for black holes and
neutron stars A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. white ...
are of the same order of magnitude. Black holes and neutron stars are therefore often difficult to distinguish. However, neutron stars may have additional properties. They show
differential rotation Differential rotation is seen when different parts of a rotating object move with different angular velocities (rates of rotation) at different latitudes and/or depths of the body and/or in time. This indicates that the object is not solid. In fl ...
, and can have a magnetic field and exhibit localized explosions (thermonuclear bursts). Whenever such properties are observed, the compact object in the
binary system A binary system is a system of two astronomical bodies which are close enough that their gravitational attraction causes them to orbit each other around a barycenter ''(also see animated examples)''. More restrictive definitions require that th ...
is revealed as a neutron star. The derived masses come from observations of compact X-ray sources (combining X-ray and optical data). All identified neutron stars have a mass below 3.0 solar masses; none of the compact systems with a mass above 3.0 solar masses display the properties of a neutron star. The combination of these facts makes it more and more likely that the class of compact stars with a mass above 3.0 solar masses are in fact black holes. Note that this proof of the existence of stellar black holes is not entirely observational but relies on theory: we can think of no other object for these massive compact systems in stellar binaries besides a black hole. A direct proof of the existence of a black hole would be if one actually observes the
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
of a particle (or a cloud of gas) that falls into the black hole.


Black hole kicks

The large distances above the
galactic plane The galactic plane is the plane on which the majority of a disk-shaped galaxy's mass lies. The directions perpendicular to the galactic plane point to the galactic poles. In actual usage, the terms ''galactic plane'' and ''galactic poles'' usual ...
achieved by some binaries are the result of black hole natal kicks. The velocity distribution of black hole natal kicks seems similar to that of neutron star kick velocities. One might have expected that it would be the momenta that were the same with black holes receiving lower velocity than neutron stars due to their higher mass but that doesn't seem to be the case, which may be due to the fall-back of asymmetrically expelled matter increasing the momentum of the resulting black hole.


Mass gaps

It is predicted by some models of stellar evolution that black holes with masses in two ranges cannot be directly formed by the gravitational collapse of a star. These are sometimes distinguished as the "lower" and "upper" mass gaps, roughly representing the ranges of 2 to 5 and 50 to 150 solar masses (), respectively. Another range given for the upper gap is 52 to 133 . has been regarded as the upper mass limit for stars in the current era of the universe.


Lower mass gap

A lower mass gap is suspected on the basis of a scarcity of observed candidates with masses within a few solar masses above the maximum possible neutron star mass. The existence and theoretical basis for this possible gap are uncertain. The situation may be complicated by the fact that any black holes found in this mass range may have been created via the merging of binary neutron star systems, rather than stellar collapse. The
LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large ...
/
Virgo Virgo may refer to: *Virgo (astrology), the sixth astrological sign of the zodiac * Virgo (constellation), a constellation *Virgo Cluster, a cluster of galaxies in the constellation Virgo *Virgo Stellar Stream, remains of a dwarf galaxy * Virgo Su ...
collaboration has reported three candidate events among their gravitational wave observations in run O3 with component masses that fall in this lower mass gap. There has also been reported an observation of a bright, rapidly rotating giant star in a binary system with an unseen companion emitting no light, including x-rays, but having a mass of solar masses. This is interpreted to suggest that there may be many such low-mass black holes that are not currently consuming any material and are hence undetectable via the usual x-ray signature.


Upper mass gap

The upper mass gap is predicted by comprehensive models of late-stage stellar evolution. It is expected that with increasing mass, supermassive stars reach a stage where a
pair-instability supernova A pair-instability supernova is a type of supernova predicted to occur when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal radiati ...
occurs, during which
pair production Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specifi ...
, the production of free
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s and positrons in the collision between atomic nuclei and energetic
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s, temporarily reduces the internal pressure supporting the star's core against gravitational collapse. This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind. Pair-instability supernovae can only happen in stars with a mass range from around 130 to 250 solar masses () (and low to moderate metallicity (low abundance of elements other than hydrogen and helium – a situation common in
Population III stars During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926: Baade noticed th ...
)). However, this mass gap is expected to be extended down to about 45 solar masses by the process of pair-instability pulsational mass loss, before the occurrence of a "normal" supernova explosion and core collapse. In nonrotating stars the lower bound of the upper mass gap may be as high as 60 . The possibility of direct collapse into black holes of stars with core mass > 133 , requiring total stellar mass of > 260 has been considered, but there may be little chance of observing such a high-mass supernova remnant; i.e., the lower bound of the upper mass gap may represent a mass cutoff. Observations of the LB-1 system of a star and unseen companion were initially interpreted in terms of a black hole with a mass of about 70 solar masses, which would be excluded by the upper mass gap. However, further investigations have weakened this claim. Black holes may also be found in the mass gap through mechanisms other than those involving a single star, such as the merger of black holes.


Candidates

Our
Milky Way galaxy The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
contains several stellar-mass black hole candidates (BHCs) which are closer to us than the supermassive black hole in the
galactic center The Galactic Center or Galactic Centre is the rotational center, the barycenter, of the Milky Way galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a compact ra ...
region. Most of these candidates are members of
X-ray binary X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the ''donor'' (usually a relatively normal star), to the other component, called the ''accretor'', whi ...
systems in which the compact object draws matter from its partner via an accretion disk. The probable black holes in these pairs range from three to more than a dozen solar masses.


Extragalactic

Candidates outside our galaxy come from gravitational wave detections: The disappearance of N6946-BH1 following a failed supernova in
NGC 6946 NGC 6946, sometimes referred to as the Fireworks Galaxy, is a face-on intermediate spiral galaxy with a small bright nucleus, whose location in the sky straddles the boundary between the northern constellations of Cepheus and Cygnus. Its dista ...
may have resulted in the formation of a black hole.


See also

* Black holes in fiction *
Supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
*
Rogue black hole A rogue black hole (also termed a free-floating, interstellar, nomad, orphan, unbound or wandering black hole) is an interstellar object without a host galactic group. They are caused by collisions between two galaxies or when the merging of two ...


References


External links


Black Holes: Gravity's Relentless Pull
Award-winning interactive multimedia Web site about the physics and astronomy of black holes from the Space Telescope Science Institute
Black hole diagrams
*
Heaviest Stellar Black Hole Discovered in Nearby Galaxy, Newswise, 17-Oct-2007
{{DEFAULTSORT:Stellar Black Hole + Compact stars