HOME

TheInfoList



OR:

Star-shaped polymers are the simplest class of branched polymers with a general structure consisting of several (at least three) linear chains connected to a central core. The core, or the center, of the polymer can be an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
,
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
, or
macromolecule A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The ...
; the chains, or "arms", consist of variable-length organic chains. Star-shaped polymers in which the arms are all equivalent in length and structure are considered
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
, and ones with variable lengths and structures are considered
heterogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
. Star-shaped polymers' unique shape and associated properties, such as their compact structure, high arm density, efficient synthetic routes, and unique rheological properties make them promising tools for use in
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to dr ...
, other biomedical applications,
thermoplastics A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
, and
nanoelectronics Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical p ...
Drew C. Forman ; Florian Wieberger ; Andre Gröschel ; Axel H. E. Müller ; Hans-Werner Schmidt ; Christopher K. Ober; Comparison of star and linear ArF resists. Proc. SPIE 7639, Advances in Resist Materials and Processing Technology XXVII, 76390P (March 25, 2010); among other applications.


History

Star-shaped polymers were first reported by John Schaefgen and
Paul Flory Paul John Flory (June 19, 1910 – September 9, 1985) was an American chemist and Nobel laureate who was known for his work in the field of polymers, or macromolecules. He was a leading pioneer in understanding the behavior of polymers in so ...
in 1948 while studying multichain polymers; they synthesized star-shaped polyamides. The next major publication regarding star-shaped polymers was in 1962 by Maurice Morton et al. Their research presented the first study demonstrating a method to create well-defined star-shaped polymers; this route was through living anionic polymerization. Many studies on the characteristics, syntheses, and applications of star-shaped polymers have since been undertaken and remain an active area of study.


Nomenclature

Recommendations on nomenclatures still differ widely across different regulatory bodies (
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
,
CAS Cas may refer to: * Caș, a type of cheese made in Romania * ' (1886–) Czech magazine associated with Tomáš Garrigue Masaryk * '' Čas'' (19 April 1945–February 1948), the official, daily newspaper of the Democratic Party of Slovakia * ''CA ...
, MDL). According to
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
star-shaped polymers are designated by a ''star'' prefix which can be further specified as ''f''-''star'' when the number of arms ''f'' is known. An example would be ''star''-(polyA; polyB; polyC) for a variegated (heteroarm) star polymer with three arm species, but an undefined number of arms and distribution of arms. When the number of arms and its distribution is known this can be designated as for example 6-''star''-(polyA(''f''3); polyB(''f''3)) where 6 arms exist in total whereof 3 consist of polyA polymer. Stars containing only one species (same chemistry and molar mass) of arms are called regular stars (also called homo-arm). Stars with more than one arm species are designated as variegated stars (hetero-arm).


Properties


Structure

Star-shaped polymers consist of a multifunctional center from which at least three polymer chains (arms) radiate. These arms can be chemically identical (homostars) or different (heteroarm stars). Additionally, individual arms may be composed of multiple polymers, resulting in star-block polymers or star
copolymers In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are some ...
. The unique properties of star-shaped polymers come from their
chemical structure A chemical structure determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid. Molecular geometry refers to the spatial arrangement of ...
as well as the length and number of their arms.


Dynamic and rheological properties

Some of the most interesting characteristics exhibited by star-shaped polymers are their unique rheological and dynamic properties compared to linear analogues of identical
molecular weight A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
and monomer composition. Generally, they have smaller hydrodynamic radii, radii of gyration and lower internal
viscosities The viscosity of a fluid is a measure of its drag (physics), resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quant ...
than linear analogues of the same
molecular weight A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
. Internal
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
increases with increased functionality and
molecular weight A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
of branches with the effects of functionality eventually saturating, leaving
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
dependent only on
molecular weight A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
of the arms. Heteroarm stars have observed
viscosities The viscosity of a fluid is a measure of its drag (physics), resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quant ...
and hydrodynamic radii higher than homostars. This is due to the increased repulsive interactions that occur as a result of a greater number of heterocontacts between the different arms. In addition, star-shaped polymers exhibit lower melt temperatures, lower crystallization temperatures and lower degrees of
crystallinity Crystallinity refers to the degree of structural order in a solid. In a crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic stru ...
than comparable linear analogues.


Self-assembly

The unique
self-assembly Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
properties of star shaped polymers make them a promising field of research for use in applications such as
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to dr ...
and multiphase processes such as separation of organic/inorganic materials. Generally, star-shaped polymers have higher
critical micelle concentration In colloidal and surface chemistry, the critical micelle concentration (CMC) is defined as the concentration of surfactants above which micelles form and all additional surfactants added to the system will form micelles. The CMC is an important c ...
s, and so lower aggregation numbers, than their analogous, similar
molecular weight A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
linear chains. The addition of functional groups to the arms of star-shaped polymers as well as selective solvent choice can affect their aggregation properties. Increasing the number of functional groups while retaining the same
molecular weight A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
decreases aggregation numbers. Heteroarm polymers have been shown to aggregate into particularly interesting supramolecular formations such as stars, segmented ribbons, and core-shell-corona micellar assemblies depending on their arms' solubility in solution, which can be affected by changes in
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
, pH,
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
, etc. These
self-assembly Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
properties have implications for
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
of the whole star polymers themselves and for other solutes in solution. For Heteroarm polymers, increasing the
molecular weight A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
of soluble chains increases the overall
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
of the star. Certain Heteroarm star-block polymers have been shown to stabilize water-organic solvent
emulsions An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althoug ...
, while others have demonstrated the ability to increase the
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
of inorganic salts in organic solutions.


Syntheses

Star-shaped polymers can be synthesized through various approaches. The most common syntheses include an arm-first approach, in which the living chains are used as the initiators, and a core-first approach, in which the core is used as the initiator. Other synthetic routes include: controlled sol-gel processes, group transfer polymerization, transition metal catalysis, living anionic polymerization, living cationic polymerization, ring opening polymerization, ring-opening metathesis polymerization (ROMP), and controlled radical polymerization.


Arm-first

In the arm-first (also known as the "arm-in" or convergent approach) method, monofunctional living polymers with known characteristics are used as precursors in the reaction. The active site at the end of their chain can be directly reacted with an appropriately reactive multifunctional polymer core (also known as a linking agent) to produce a star-shaped polymer. In this approach the resulting star-polymer consists of
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
chain groups. The arm-first synthesis route is arguably the most efficient synthesis of star-shaped polymers. This is because each step can be directly controlled and assessed; the arms and core can be isolated and characterized prior to a stoichiometric reaction, and the functionality of the final star-polymer can then be accurately and directly measured. One common approach to the arm-first synthesis is through anionic polymerization methods. This involves using "arms" that are
anionic An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
and reacting them with a core containing
deactivating groups In electrophilic aromatic substitution reactions, existing substituent groups on the aromatic ring influence the overall reaction rate or have a directing effect on positional isomer of the products that are formed. An electron donating group (EDG ...
for the arms to react with. The
deactivating groups In electrophilic aromatic substitution reactions, existing substituent groups on the aromatic ring influence the overall reaction rate or have a directing effect on positional isomer of the products that are formed. An electron donating group (EDG ...
on the core are often chlorosilanes,
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
leaving group In chemistry, a leaving group is defined by the IUPAC as an atom or group of atoms that detaches from the main or residual part of a substrate during a reaction or elementary step of a reaction. However, in common usage, the term is often limited ...
s, or deactivating
alkenes In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. Alkene is often used as synonym of olefin, that is, any hydrocarbon containing one or more double bonds.H. Stephen Stoker (2015): General, Organic, a ...
. Chlorosilane derivatives serve as especially reactive cores, and can react quantitatively (or very close to quantitatively) with
carbanion In organic chemistry, a carbanion is an anion in which carbon is trivalent (forms three bonds) and bears a formal negative charge (in at least one significant resonance form). Formally, a carbanion is the conjugate base of a carbon acid: :R3 ...
living polymers; this reaction involves
carbanions In organic chemistry, a carbanion is an anion in which carbon is trivalent (forms three bonds) and bears a formal negative charge (in at least one significant resonance form). Formally, a carbanion is the conjugate base of a carbon acid: :R3C ...
performing
electrophilic substitution Electrophilic substitution reactions are chemical reactions in which an electrophile displaces a functional group in a compound, which is typically, but not always, aromatic. Aromatic substitution reactions are characteristic of aromatic compound ...
with the Si-Cl groups (as shown in the below figure). In a case like this, the resulting arms are all
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
and can be well characterized, and the core can also be well characterized, leading to a well-characterized star-shaped polymer. Since both the core and the arms are rather reactive, essentially all Si-Cl undergo
electrophilic substitution Electrophilic substitution reactions are chemical reactions in which an electrophile displaces a functional group in a compound, which is typically, but not always, aromatic. Aromatic substitution reactions are characteristic of aromatic compound ...
, and the resulting star-shaped polymers thus have a rather narrow polydispersity index.


Core-first

In the core-first approach (also known as the "arm-out" or divergent approach), a multifunctional core serves as the initiator simultaneously for several arms. This approach proves to be more complicated than the arm-first approach, in that finding an appropriate and stable core is difficult, and characterizing the synthesized star-polymer is challenging. The core-first route was first approached in 1988 through functionalizing
DVB Digital Video Broadcasting (DVB) is a set of international open standards for digital television. DVB standards are maintained by the DVB Project, an international industry consortium, and are published by a Joint Technical Committee (JTC) o ...
using potassium naphthalenide to create a multifunctional core. The core can than be reacted with
ethylene oxide Ethylene oxide is an organic compound with the formula . It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sw ...
to create a star-shaped polymer. As is typical of most core-first approaches, this scheme had issues with high
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
and gelation. The star-shaped polymer was characterized by
size-exclusion chromatography Size-exclusion chromatography (SEC), also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their size, and in some cases molecular weight. It is usually applied to large molecules ...
and
light scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
techniques.


Applications

While many studies have been published regarding star-shaped polymers, their commercial applications are limited, but growing constantly as research expands. Some commercial applications of star-shaped polymers include: *Asymmetrical star-shaped polymers have been found to be effective thermoplastic elastomers. Their morphologies contribute favorably to mechanical properties such as toughness, stretch recovery, transparency, and thermostability. *Use as viscosity index improvers in
car engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combust ...
lubricating oils. Star-shaped polymers generally have lower internal
viscosities The viscosity of a fluid is a measure of its drag (physics), resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quant ...
than their linear analogues due to their smaller hydrodynamic radii and radii of gyration. This makes them favorable for use in fluids that require low
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
such as lubricating oils in
car engines An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combust ...
. *The architecture of photoresists has typically been dominated by linear polymers. Star-shaped polymers, however, have been shown to display more advantageous properties when compared to their linear analogues. They are able to decrease roughness of
photoresist A photoresist (also known simply as a resist) is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronic industry. ...
sidewalls without a decrease in sensitivity or resolution. This is due to star-shaped polymers' decreased tendency to form chain entanglements relative to their linear analogues of similar molecular weights, which leads to insolubility and increased roughness. *Miktoarm polymers that form core-shell-corona micellar structures have been seen to uptake and release small molecules in different biological conditions. Small molecules associate with certain
polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
arms that form the interior of the micellar structure during transport. When they are exposed to conditions that cause the interior arms to become solvated, the small molecules are released. Specifically, successful encapsulation of the anti-cancer agent doxorubicin hydrochloride has been achieved. *The low gelation concentration of
telechelic A telechelic polymer or oligomer is a prepolymer capable of entering into further polymerization or other reactions through its reactive end-groups. It can be used for example to synthesize block copolymers. By definition, a telechelic polymer is a ...
and semitelechelic star-shaped polymers has made them useful in the development of new
hydrogel A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels ar ...
s for biomaterial applications. This low gelation concentration is caused by an increased number of intermolecular interactions relative to linear analogues due to star-shaped polymers' increased number of functional groups in a given volume.


References

{{reflist Polymers