In biology, a species is the basic unit of biological classification, classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can reproduction, produce Fertility, fertile offspring, typically by sexual reproduction. Other ways of defining species include their karyotype, DNA sequence, morphology (biology), morphology, behaviour or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined. The total number of species is estimated to be between 8 and 8.7 million. However, only about 14% of these had been described by 2011. All species (except viruses) are given a binomial nomenclature, two-part name, a "binomial". The first part of a binomial is the genus to which the species belongs. The second part is called the specific name (zoology), specific name or the specific name (botany), specific epithet (in botanical nomenclature, also sometimes in zoological nomenclature). For example, ''Boa constrictor'' is one of four species of the genus ''Boa (genus), Boa'', with ''constrictor'' being the species’ epithet. While the definitions given above may seem adequate at first glance, when looked at more closely they represent problematic species concepts. For example, the boundaries between closely related species become unclear with hybrid (biology), hybridisation, in a species complex of hundreds of similar microspecies, and in a ring species. Also, among organisms that reproduce only Asexual reproduction, asexually, the concept of a reproductive species breaks down, and each clone is potentially a microspecies. Although none of these are entirely satisfactory definitions, and while the concept of species may not be a perfect model of life, it is still an incredibly useful tool to scientists and conservation biology, conservationists for studying life on Earth, regardless of the theoretical difficulties. If species were fixed and clearly distinct from one another, there would be no problem, but evolutionary processes cause species to change continually, and to grade into one another. Species were seen from the time of Aristotle until the 18th century as fixed categories that could be arranged in a hierarchy, the great chain of being. In the 19th century, biologists grasped that species could evolve given sufficient time. Charles Darwin's 1859 book ''On the Origin of Species'' explained how speciation, species could arise by natural selection. That understanding was greatly extended in the 20th century through genetics and population ecology. Genetic variability arises from mutations and recombination (biology), recombination, while organisms themselves are mobile, leading to geographical isolation and genetic drift with varying selection pressures. Genes can sometimes be exchanged between species by horizontal gene transfer; new species can arise rapidly through hybridisation and polyploidy; and species may extinction, become extinct for a variety of reasons. Viruses are a special case, driven by a mutation–selection balance, balance of mutation and selection, and can be treated as Viral quasispecies, quasispecies.


Biologists and taxonomists have made many attempts to define species, beginning from morphology (biology), morphology and moving towards genetics. Early taxonomists such as Linnaeus had no option but to describe what they saw: this was later formalised as the typological or morphological species concept. Ernst Mayr emphasised reproductive isolation, but this, like other species concepts, is hard or even impossible to test. Later biologists have tried to refine Mayr's definition with the recognition and cohesion concepts, among others. Many of the concepts are quite similar or overlap, so they are not easy to count: the biologist R. L. Mayden recorded about 24 concepts, and the philosopher of science John Wilkins counted 26. Wilkins further grouped the species concepts into seven basic kinds of concepts: (1) agamospecies for asexual organisms (2) biospecies for reproductively isolated sexual organisms (3) ecospecies based on ecological niches (4) evolutionary species based on lineage (5) genetic species based on gene pool (6) morphospecies based on form or phenotype and (7) taxonomic species, a species as determined by a taxonomist.

Typological or morphological species

A typological species is a group of organisms in which individuals conform to certain fixed properties (a type), so that even pre-literate people often recognise the same taxon as do modern taxonomists. The clusters of variations or phenotypes within specimens (such as longer or shorter tails) would differentiate the species. This method was used as a "classical" method of determining species, such as with Linnaeus early in evolutionary theory. However, different phenotypes are not necessarily different species (e.g. a four-winged ''Drosophila'' born to a two-winged mother is not a different species). Species named in this manner are called ''morphospecies''. In the 1970s, Robert R. Sokal, Theodore J. Crovello and Peter Sneath proposed a variation on the morphological species concept, a phenetics, phenetic species, defined as a set of organisms with a similar phenotype to each other, but a different phenotype from other sets of organisms. It differs from the morphological species concept in including a numerical measure of distance or similarity to cluster entities based on multivariate comparisons of a reasonably large number of phenotypic traits.

Recognition and cohesion species

A mate-recognition species is a group of sexually reproducing organisms that recognise one another as potential mates. Expanding on this to allow for post-mating isolation, a cohesion species is the most inclusive population of individuals having the potential for phenotypic cohesion through intrinsic cohesion mechanisms; no matter whether populations can hybridise successfully, they are still distinct cohesion species if the amount of hybridisation is insufficient to completely mix their respective gene pools. A further development of the recognition concept is provided by the biosemiotic concept of species.

Genetic similarity and barcode species

In microbiology, genes can move freely even between distantly related bacteria, possibly extending to the whole bacterial domain. As a rule of thumb, microbiologists have assumed that kinds of Bacteria or Archaea with 16S ribosomal RNA gene sequences more similar than 97% to each other need to be checked by DNA-DNA hybridisation to decide if they belong to the same species or not. This concept was narrowed in 2006 to a similarity of 98.7%. DNA-DNA hybridisation is outdated, and results have sometimes led to misleading conclusions about species, as with the pomarine jaeger, pomarine and great skua. Modern approaches compare sequence similarity using computational methods. DNA barcoding has been proposed as a way to distinguish species suitable even for non-specialists to use. The so-called barcode is a region of mitochondrial DNA within the gene for cytochrome c oxidase. A database, Barcode of Life Data Systems (BOLD), contains DNA barcode sequences from over 190,000 species. However, scientists such as Rob DeSalle have expressed concern that classical taxonomy and DNA barcoding, which they consider a misnomer, need to be reconciled, as they delimit species differently. Genetic introgression mediated by endosymbionts and other vectors can further make barcodes ineffective in the identification of species.

Phylogenetic or cladistic species

A phylogenetic or cladistics, cladistic species is "the smallest aggregation of populations (sexual) or lineages (asexual) diagnosable by a unique combination of character states in comparable individuals (semaphoronts)". The empirical basis – observed character states – provides the evidence to support hypotheses about evolutionarily divergent lineages that have maintained their hereditary integrity through time and space. Molecular markers may be used to determine diagnostic genetic differences in the nuclear or mitochondrial DNA of various species. For example, in a study done on fungi, studying the nucleotide characters using cladistic species produced the most accurate results in recognising the numerous fungi species of all the concepts studied. Versions of the phylogenetic species concept that emphasise monophyly or diagnosability may lead to splitting of existing species, for example in Bovidae, by recognising old subspecies as species, despite the fact that there are no reproductive barriers, and populations may intergrade morphologically. Others have called this approach taxonomic inflation, diluting the species concept and making taxonomy unstable. Yet others defend this approach, considering "taxonomic inflation" pejorative and labelling the opposing view as "taxonomic conservatism"; claiming it is politically expedient to split species and recognise smaller populations at the species level, because this means they can more easily be included as endangered in the IUCN red list and can attract conservation legislation and funding. Unlike the biological species concept, a cladistic species does not rely on reproductive isolation – its criteria are independent of processes that are integral in other concepts. Therefore, it applies to asexual lineages. However, it does not always provide clear cut and intuitively satisfying boundaries between taxa, and may require multiple sources of evidence, such as more than one polymorphic locus, to give plausible results.

Evolutionary species

An evolutionary species, suggested by George Gaylord Simpson in 1951, is "an entity composed of organisms which maintains its identity from other such entities through time and over space, and which has its own independent evolutionary fate and historical tendencies". This differs from the biological species concept in embodying persistence over time. Wiley and Mayden stated that they see the evolutionary species concept as "identical" to Willi Hennig's species-as-lineages concept, and asserted that the biological species concept, "the several versions" of the phylogenetic species concept, and the idea that species are of the same kind as higher taxa are not suitable for biodiversity studies (with the intention of estimating the number of species accurately). They further suggested that the concept works for both asexual and sexually-reproducing species. A version of the concept is Kevin de Queiroz's "General Lineage Concept of Species".

Ecological species

An ecological species is a set of organisms adapted to a particular set of resources, called a niche, in the environment. According to this concept, populations form the discrete phenetic clusters that we recognise as species because the ecological and evolutionary processes controlling how resources are divided up tend to produce those clusters.

Genetic species

A genetic species as defined by Robert Baker and Robert Bradley is a set of genetically isolated interbreeding populations. This is similar to Mayr's Biological Species Concept, but stresses genetic rather than reproductive isolation. In the 21st century, a genetic species can be established by comparing DNA sequences, but other methods were available earlier, such as comparing karyotypes (sets of chromosomes) and allozymes (enzyme variants).

Evolutionarily significant unit

An evolutionarily significant unit (ESU) or "wildlife species" is a population of organisms considered distinct for purposes of conservation.


In palaeontology, with only comparative anatomy (morphology) from fossils as evidence, the concept of a chronospecies can be applied. During anagenesis (evolution, not necessarily involving branching), palaeontologists seek to identify a sequence of species, each one derived from the pseudoextinction, phyletically extinct one before through continuous, slow and more or less uniform change. In such a time sequence, palaeontologists assess how much change is required for a morphologically distinct form to be considered a different species from its ancestors.

Viral quasispecies

Viruses have enormous populations, are doubtfully living since they consist of little more than a string of DNA or RNA in a protein coat, and mutate rapidly. All of these factors make conventional species concepts largely inapplicable. A viral Quasispecies model, quasispecies is a group of genotypes related by similar mutations, competing within a highly mutagenic environment, and hence governed by a mutation–selection balance. It is predicted that a viral quasispecies at a low but Neutral theory of molecular evolution, evolutionarily neutral and highly connected (that is, flat) region in the fitness landscape will outcompete a quasispecies located at a higher but narrower fitness peak in which the surrounding mutants are unfit, "the quasispecies effect" or the "survival of the flattest". There is no suggestion that a viral quasispecies resembles a traditional biological species.

Taxonomy and naming

Common and scientific names

The commonly used names for kinds of organisms are often ambiguous: "cat" could mean the domestic cat, ''Felis catus'', or the cat family, Felidae. Another problem with common names is that they often vary from place to place, so that puma, cougar, catamount, panther, painter and mountain lion all mean ''Puma concolor'' in various parts of America, while "panther" may also mean the jaguar (''Panthera onca'') of Latin America or the leopard (''Panthera pardus'') of Africa and Asia. In contrast, the scientific names of species are chosen to be unique and universal; they are in two parts used together: the genus as in ''Puma'', and the Specific name (zoology), specific epithet as in ''concolor''.

Species description

A species is given a taxonomy (biology), taxonomic name when a type (biology), type specimen is described formally, in a publication that assigns it a unique scientific name. The description typically provides means for identifying the new species, differentiating it from other previously described and related or confusable species and provides a validly published name (in botany) or an available name (in zoology) when the paper is accepted for publication. The type material is usually held in a permanent repository, often the research collection of a major museum or university, that allows independent verification and the means to compare specimens.One example of an abstract of an article naming a new species can be found at Describers of new species are asked to choose names that, in the words of the International Code of Zoological Nomenclature, are "appropriate, compact, euphonious, memorable, and do not cause offence".


Books and articles sometimes intentionally do not identify species fully, using the abbreviation "sp." in the singular or "spp." (standing for ''species pluralis'', the Latin for multiple species) in the plural in place of the specific name or epithet (e.g. ''Canis'' sp.). This commonly occurs when authors are confident that some individuals belong to a particular genus but are not sure to which exact species they belong, as is common in paleontology. Authors may also use "spp." as a short way of saying that something applies to many species within a genus, but not to all. If scientists mean that something applies to all species within a genus, they use the genus name without the specific name or epithet. The names of genera and species are usually printed in italics. However, abbreviations such as "sp." should not be italicised. When a species' identity is not clear, a specialist may use "cf." before the epithet to indicate that confirmation is required. The abbreviations "nr." (near) or "aff." (affine) may be used when the identity is unclear but when the species appears to be similar to the species mentioned after.

Identification codes

With the rise of online databases, codes have been devised to provide identifiers for species that are already defined, including: * National Center for Biotechnology Information (NCBI) employs a numeric 'taxid' or ''Taxonomy identifier'', a "stable unique identifier", e.g., the taxid of ''Homo sapiens'' is 9606. * Kyoto Encyclopedia of Genes and Genomes (KEGG) employs a three- or four-letter code for a limited number of organisms; in this code, for example, ''H. sapiens'' is simply ''hsa''. * UniProt employs an "organism mnemonic" of not more than five alphanumeric characters, e.g., ''HUMAN'' for ''H. sapiens''. * Integrated Taxonomic Information System (ITIS) provides a unique number for each species. The LSID for ''Homo sapiens'' is urn:lsid:catalogueoflife.org:taxon:4da6736d-d35f-11e6-9d3f-bc764e092680:col20170225.

Lumping and splitting

The naming of a particular species, including which genus (and higher taxa) it is placed in, is a ''hypothesis'' about the evolutionary relationships and distinguishability of that group of organisms. As further information comes to hand, the hypothesis may be corroborated or refuted. Sometimes, especially in the past when communication was more difficult, taxonomists working in isolation have given two distinct names to individual organisms later identified as the same species. When two species names are discovered to apply to the same species, the older species name is given Principle of Priority, priority and usually retained, and the newer name considered as a junior synonym, a process called ''synonymy (taxonomy), synonymy''. Dividing a taxon into multiple, often new, taxa is called ''splitting''. Taxonomists are often referred to as "lumpers" or "splitters" by their colleagues, depending on their personal approach to recognising differences or commonalities between organisms. The circumscription of taxa, considered a taxonomic decision at the discretion of cognizant specialists, is not governed by the Codes of Zoological or Botanical Nomenclature.

Broad and narrow senses

The Nomenclature codes, nomenclatural codes that guide the naming of species, including the International Code of Zoological Nomenclature, ICZN for animals and the International Code of Nomenclature for algae, fungi, and plants, ICN for plants, do not make rules for defining the boundaries of the species. Research can change the boundaries, also known as circumscription, based on new evidence. Species may then need to be distinguished by the boundary definitions used, and in such cases the names may be qualified with ''sensu stricto'' ("in the narrow sense") to denote usage in the exact meaning given by an author such as the person who named the species, while the antonym ''sensu lato'' ("in the broad sense") denotes a wider usage, for instance including other subspecies. Other abbreviations such as "auct." ("author"), and qualifiers such as "non" ("not") may be used to further clarify the sense in which the specified authors delineated or described the species.

Mayr's biological species concept

Most modern textbooks make use of Ernst Mayr's 1942 definition, known as the Biological Species Concept as a basis for further discussion on the definition of species. It is also called a reproductive or isolation concept. This defines a species as It has been argued that this definition is a natural consequence of the effect of sexual reproduction on the dynamics of natural selection. Mayr's use of the adjective "potentially" has been a point of debate; some interpretations exclude unusual or artificial matings that occur only in captivity, or that involve animals capable of mating but that do not normally do so in the wild.

The species problem

It is difficult to define a species in a way that applies to all organisms. The debate about species delimitation is called the Species concept, species problem. The problem was recognised even in 1859, when Darwin wrote in ''On the Origin of Species'':

When Mayr's concept breaks down

A simple textbook definition, following Mayr's concept, works well for most multi-celled organisms, but breaks down in several situations: * When organisms Asexual reproduction, reproduce asexually, as in single-celled organisms such as bacteria and other prokaryotes, and parthenogenetic or apomixis, apomictic multi-celled organisms. The term quasispecies is sometimes used for rapidly mutating entities like viruses. * When scientists do not know whether two morphologically similar groups of organisms are capable of interbreeding; this is the case with all extinct life-forms in palaeontology, as breeding experiments are not possible. * When hybrid (biology), hybridisation permits substantial gene flow between species. * In ring species, when members of adjacent populations in a widely continuous distribution range interbreed successfully but members of more distant populations do not. Species identification is made difficult by discordance between molecular and morphological investigations; these can be categorised as two types: (i) one morphology, multiple lineages (e.g. convergent evolution, morphological convergence, cryptic species) and (ii) one lineage, multiple morphologies (e.g. phenotypic plasticity, multiple biological life cycle, life-cycle stages). In addition, horizontal gene transfer (HGT) makes it difficult to define a species. All species definitions assume that an organism acquires its genes from one or two parents very like the "daughter" organism, but that is not what happens in HGT. There is strong evidence of HGT between very dissimilar groups of prokaryotes, and at least occasionally between dissimilar groups of eukaryotes, including some crustaceans and echinoderms. The evolutionary biologist James Mallet concludes that

Aggregates of microspecies

The species concept is further weakened by the existence of microspecies, groups of organisms, including many plants, with very little genetic variability, usually forming Species complex, species aggregates. For example, the dandelion ''Taraxacum officinale'' and the blackberry ''Rubus fruticosus'' are aggregates with many microspecies—perhaps 400 in the case of the blackberry and over 200 in the dandelion, complicated by Hybridisation (biology), hybridisation, apomixis and polyploidy, making gene flow between populations difficult to determine, and their taxonomy debatable. Species complexes occur in insects such as ''Heliconius'' butterflies, vertebrates such as ''Hypsiboas'' treefrogs, and fungi such as the fly agaric. File:Ripe, ripening, and green blackberries.jpg, Blackberries belong to any of hundreds of microspecies of the ''Rubus fruticosus'' species aggregate. File:Heliconius mimicry.png, The butterfly genus ''Heliconius'' contains many similar species. File:Systematics-of-treefrogs-of-the-Hypsiboas-calcaratus-and-Hypsiboas-fasciatus-species-complex-(Anura-ZooKeys-370-001-g009.jpg, The ''Hypsiboas calcaratus''–''Hypsiboas fasciatus, fasciatus'' species complex contains at least six species of treefrog.


Natural Hybrid (biology), hybridisation presents a challenge to the concept of a reproductively isolated species, as fertile hybrids permit gene flow between two populations. For example, the carrion crow ''Corvus corone'' and the hooded crow ''Corvus cornix'' appear and are classified as separate species, yet they hybridise freely where their geographical ranges overlap. File:Krähe_65(loz) (cropped).JPG, Carrion crow File:20151221 hybrid Corvus corone × Corvus cornix.jpg, Hybrid with dark belly, dark gray nape File:Corvus cornix (Scops).jpg, Hybrid (biology), Hybrid with dark belly File:Wrona_Siwa.jpg, Hooded crow

Ring species

A ring species is a connected series of neighbouring populations, each of which can sexually interbreed with adjacent related populations, but for which there exist at least two "end" populations in the series, which are too distantly related to interbreed, though there is a potential gene flow between each "linked" population. Such non-breeding, though genetically connected, "end" populations may Sympatric, co-exist in the same region thus closing the ring. Ring species thus present a difficulty for any species concept that relies on reproductive isolation. However, ring species are at best rare. Proposed examples include the herring gull-lesser black-backed gull complex around the North pole, the ''Ensatina eschscholtzii'' group of 19 populations of salamanders in America, and the greenish warbler in Asia, but many so-called ring species have turned out to be the result of misclassification leading to questions on whether there really are any ring species. File:Ring species seagull.svg, Seven "species" of ''Larus'' gulls interbreed in a ring around the Arctic. File:PT05 ubt.jpeg, Opposite ends of the ring: a herring gull (''Larus argentatus'') (front) and a lesser black-backed gull (''Larus fuscus'') in Norway File:Greenish Warbler Sikkim India 11.05.2014.jpg, A greenish warbler, ''Phylloscopus trochiloides'' File:Greenish warbler ring.svg, Presumed evolution of five "species" of greenish warblers around Himalayas


Species are subject to change, whether by evolving into new species, exchanging genes with other species, merging with other species or by becoming extinct.


The evolutionary process by which biological populations evolve to become distinct or reproductively isolated as species is called speciation. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book ''The Origin of Species''. Speciation depends on a measure of reproductive isolation, a reduced gene flow. This occurs most easily in allopatric speciation, where populations are separated geographically and can diverge gradually as mutations accumulate. Reproductive isolation is threatened by hybridisation, but this can be selected against once a pair of populations have incompatible alleles of the same gene, as described in the Bateson–Dobzhansky–Muller model. A different mechanism, phyletic speciation, involves one lineage gradually changing over time into a new and distinct form, without increasing the number of resultant species.

Exchange of genes between species

Horizontal gene transfer between organisms of different species, either through Hybrid (biology), hybridisation, antigenic shift, or reassortment, is sometimes an important source of genetic variation. Viruses can transfer genes between species. Bacteria can exchange plasmids with bacteria of other species, including some apparently distantly related ones in different phylogenetic Three-domain system, domains, making analysis of their relationships difficult, and weakening the concept of a bacterial species. Louis-Marie Bobay and Howard Ochman suggest, based on analysis of the genomes of many types of bacteria, that they can often be grouped "into communities that regularly swap genes", in much the same way that plants and animals can be grouped into reproductively isolated breeding populations. Bacteria may thus form species, analogous to Mayr's biological species concept, consisting of asexually reproducing populations that exchange genes by homologous recombination.


A species is extinct when the endling, last individual of that species dies, but it may be functional extinction, functionally extinct well before that moment. It is estimated that over 99 percent of all species that ever lived on Earth, some five billion species, are now extinct. Some of these were in Extinction event, mass extinctions such as those at the ends of the Ordovician, Devonian, Permian, Triassic and Cretaceous periods. Mass extinctions had a variety of causes including volcano, volcanic activity, climate change (general concept), climate change, and changes in oceanic and atmospheric chemistry, and they in turn had major effects on Earth's ecology, atmosphere, land surface and waters. Another form of extinction is through the assimilation of one species by another through hybridization. The resulting single species has been termed as a "compilospecies".

Practical implications

Biologists and conservation biology, conservationists need to categorise and identify organisms in the course of their work. Difficulty assigning organisms reliably to a species constitutes a threat to the external validity, validity of research results, for example making measurements of how abundant a species is in an ecosystem moot. Surveys using a phylogenetic species concept reported 48% more species and accordingly smaller populations and ranges than those using nonphylogenetic concepts; this was termed "taxonomic inflation", which could cause a false appearance of change to the number of endangered species and consequent political and practical difficulties. Some observers claim that there is an inherent conflict between the desire to understand the processes of speciation and the need to identify and to categorise. Conservation laws in many countries make special provisions to prevent species from going extinct. Hybridization zones between two species, one that is protected and one that is not, have sometimes led to conflicts between lawmakers, land owners and conservationists. One of the classic cases in North America is that of the protected northern spotted owl which hybridises with the unprotected California spotted owl and the barred owl; this has led to legal debates. It has been argued that the species problem is created by the varied uses of the concept of species, and that the solution is to abandon it and all other taxonomic ranks, and use unranked monophyletic groups instead. It has been argued, too, that since species are not comparable, counting them is not a valid measure of biodiversity; alternative measures of phylogenetic biodiversity have been proposed.


Classical forms

In Aristotle's biology, his biology, Aristotle used the term γένος (génos) to mean a kind, such as a bird or fish, and εἶδος (eidos) to mean a specific Hylomorphism, form within a kind, such as (within the birds) the crane (bird), crane, eagle, crow, or Old World sparrow, sparrow. These terms were translated into Latin as "genus" and "species", though they do not correspond to the Linnean taxonomy, Linnean terms thus named; today the birds are a class (taxonomy), class, the cranes are a family (taxonomy), family, and the crows a genus. A kind was distinguished by its Property (philosophy), attributes; for instance, a bird has feathers, a beak, wings, a hard-shelled egg, and warm blood. A form was distinguished by being shared by all its members, the young inheriting any variations they might have from their parents. Aristotle believed all kinds and forms to be distinct and unchanging. His approach remained influential until the Renaissance.

Fixed species

When observers in the Early Modern period began to develop systems of organization for living things, they placed each kind of animal or plant into a context. Many of these early delineation schemes would now be considered whimsical: schemes included consanguinity based on colour (all plants with yellow flowers) or behaviour (snakes, scorpions and certain biting ants). John Ray, an English naturalist, was the first to attempt a biological definition of species in 1686, as follows: In the 18th century, the Swedish scientist Carl Linnaeus classified organisms according to shared physical characteristics, and not simply based upon differences. He established the idea of a Taxonomy (biology), taxonomic hierarchy of classification based upon observable characteristics and intended to reflect natural relationships. At the time, however, it was still widely believed that there was no organic connection between species, no matter how similar they appeared. This view was influenced by European scholarly and religious education, which held that the categories of life are dictated by God, forming an Aristotelianism, Aristotelian hierarchy, the Great chain of being#The Great Chain in natural science, ''scala naturae'' or great chain of being. However, whether or not it was supposed to be fixed, the ''scala'' (a ladder) inherently implied the possibility of climbing.


In viewing evidence of hybridisation, Linnaeus recognised that species were not fixed and could change; he did not consider that new species could emerge and maintained a view of divinely fixed species that may alter through processes of hybridisation or acclimatisation. By the 19th century, naturalists understood that species could change form over time, and that the history of the planet provided enough time for major changes. Jean-Baptiste Lamarck, in his 1809 ''Zoological Philosophy'', described the transmutation of species, proposing that a species could change over time, in a radical departure from Aristotelian thinking. In 1859, Charles Darwin and Alfred Russel Wallace provided a compelling account of evolution and the formation of new species. Darwin argued that it was populations that evolved, not individuals, by natural selection from naturally occurring variation among individuals. This required a new definition of species. Darwin concluded that species are what they appear to be: ideas, provisionally useful for naming groups of interacting individuals, writing:

See also

* Cline (population genetics), Cline * Encyclopedia of Life * Endangered species * Global biodiversity * Lists of animal species * Systematics * :Lists of animal species * :Lists of plant species



Cited sources

* * *

External links

Barcoding of species

Catalogue of Life

European Species Names in Linnaean, Czech, English, German and French

Stanford Encyclopedia of Philosophy entry: ''Species''


– The free species directory that anyone can edit from the Wikimedia Foundation {{Authority control Species, Biological concepts Biology terminology Botanical nomenclature, Species Plant taxonomy, 1rank24 Zoological nomenclature, rank24 Bacterial nomenclature