HOME

TheInfoList



OR:

Soap films are thin layers of
liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, ...
(usually water-based) surrounded by air. For example, if two
soap bubble A soap bubble is an extremely thin film of soap or detergent and water enclosing air that forms a hollow sphere with an iridescent surface. Soap bubbles usually last for only a few seconds before bursting, either on their own or on contact wi ...
s come into contact, they merge and a thin film is created in between. Thus,
foam Foams are materials formed by trapping pockets of gas in a liquid or solid. A bath sponge and the head on a glass of beer are examples of foams. In most foams, the volume of gas is large, with thin films of liquid or solid separating the ...
s are composed of a network of films connected by Plateau borders. Soap films can be used as model systems for minimal surfaces, which are widely used in mathematics.


Stability

Daily experience shows that soap bubble formation is not feasible with water or with any pure liquid. Actually, the presence of soap, which is composed at a molecular scale of surfactants, is necessary to stabilize the film. Most of the time, surfactants are amphiphilic, which means they are molecules with both a
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, ...
and a
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are n ...
part. Thus, they are arranged preferentially at the air/water interface (see figure 1). Surfactants stabilize films because they create a repulsion between both surfaces of the film, preventing it from thinning and consequentially bursting. This can be shown quantitatively through calculations relating to disjoining pressure. The main repulsion mechanisms are
steric Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape ( conformation) and reactivity of ions ...
(the surfactants can not interlace) and electrostatic (if surfactants are charged). Moreover, surfactants make the film more stable toward thickness fluctuations due to the Marangoni effect. This gives some elasticity to the interface: if surface concentrations are not homogeneously dispersed at the surface, Marangoni forces will tend to re-homogenize the surface concentration (see figure 2). Even in the presence of stabilizing surfactants, a soap film does not last forever. Water evaporates with time depending on the humidity of the atmosphere. Moreover, as soon as a film is not perfectly horizontal, the liquid flows toward the bottom due to gravity and the liquid accumulates at the bottom. At the top, the film thins and bursts.


Importance of surface tension: minimal surfaces

From a mathematical point of view, soap films are minimal surfaces.
Surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) t ...
is the energy that is required to produce the surface, per unit area. A film—like any body or structure—prefers to exist in a state of minimum potential energy. In order to minimize its energy, a droplet of liquid in free space naturally assumes a spherical shape, which has the minimum surface area for a given volume. Puddles and films can exist in of the presence of other forces, like
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
and the intermolecular attraction to the atoms of a substrate. The latter phenomenon is called
wetting Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with ...
: binding forces between the substrate atoms and the film atoms can cause the total energy to decrease. In that case, the lowest energy configuration for the body would be one where as many film atoms as possible are as close as possible to the substrate. That would result in an infinitely thin film, infinitely widely spread out over the substrate. In reality, the effect of adherent wetting (causing surface maximization) and the effect of surface tension (causing surface minimization) would balance each other out: the stable configuration can be a droplet, a puddle, or a thin film, depending on the forces that work on the body.


Colours

The
iridescent Iridescence (also known as goniochromism) is the phenomenon of certain surfaces that appear to gradually change color as the angle of view or the angle of illumination changes. Examples of iridescence include soap bubbles, feathers, butterfl ...
colours of a soap film are caused by interfering of (internally and externally) reflected light waves, a process called thin film interference and are determined by the thickness of the film. This phenomenon is not the same as the origin of
rainbow A rainbow is a meteorological phenomenon that is caused by reflection, refraction and dispersion of light in water droplets resulting in a spectrum of light appearing in the sky. It takes the form of a multicoloured circular arc. Rainbows c ...
colours (caused by the
refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomen ...
of internally reflected light), but rather is the same as the phenomenon causing the colours in an oil slick on a wet road.


Drainage

If
surfactant Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsion#Emulsifiers , ...
s are well chosenBall, 2009. pp. 61–67 and the atmospheric humidity and air movements are suitably controlled, a horizontal soap film can last from minutes to hours. In contrast, a vertical soap film is affected by gravity and so the liquid tends to drain, causing the soap film to thin at the top. Colour depends on film thickness, which accounts for the coloured interference fringes that can be seen at the top of figure 4.


Black spots

During the late stages of draining, sharp-edged black spots start to form. These spots are significantly thinner (< 100 nm) than the normal soap film, giving rise to their black interference colour. Whether black spots can form depends on the concentration of the soap, and moreover there are two types of black films: * Common black films, around 50 nm in thickness, and * Newton black films, around 4 nm in thickness, require a higher electrolyte concentration. In these films the outer soap surfaces have effectively snapped together and pinched out most of the inner liquid. As drainage continues, the black spots eventually take over the entire soap film, and despite its extreme thinness, the final black film can be quite stable and can survive for many minutes.


Bursting

If a soap film is unstable, it ends by bursting. A hole is created somewhere in the film and opens very rapidly. Surface tension indeed leads to surface minimization and, thus, to film disappearance. The hole aperture is not instantaneous and is slowed by the liquid inertia. The balance between the forces of inertia and surface tension leads to the opening velocity: V=\sqrt where \gamma is the liquid surface tension, \rho is the liquid density and h is the film thickness.


References


General sources

* {{Foam scales and properties Minimal surfaces Bubbles (physics) he:קרום סבון