HOME

TheInfoList



OR:

Singlet oxygen, systematically named dioxygen(singlet) and dioxidene, is a gaseous inorganic chemical with the formula O=O (also written as or ), which is in a quantum state where all electrons are spin paired. It is kinetically unstable at ambient temperature, but the rate of decay is slow. The lowest
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to ...
of the diatomic oxygen molecule is a singlet state. It is a gas with physical properties differing only subtly from those of the more prevalent triplet
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
of O2. In terms of its chemical reactivity, however, singlet oxygen is far more reactive toward organic compounds. It is responsible for the photodegradation of many materials but can be put to constructive use in preparative organic chemistry and photodynamic therapy. Trace amounts of singlet oxygen are found in the upper atmosphere and also in polluted urban atmospheres where it contributes to the formation of lung-damaging nitrogen dioxide. It often appears and coexists confounded in environments that also generate
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
, such as pine forests with photodegradation of
turpentine Turpentine (which is also called spirit of turpentine, oil of turpentine, terebenthene, terebinthine and (colloquially) turps) is a fluid obtained by the distillation of resin harvested from living trees, mainly pines. Mainly used as a special ...
. The terms 'singlet oxygen' and ' triplet oxygen' derive from each form's number of electron
spins The spins (as in having "the spins")Diane Marie Leiva. ''The Florida State University College of Education''Women's Voices on College Drinking: The First-Year College Experience"/ref> is an adverse reaction of intoxication that causes a state of v ...
. The singlet has only one possible arrangement of electron spins with a total quantum spin of 0, while the triplet has three possible arrangements of electron spins with a total quantum spin of 1, corresponding to three degenerate states. In spectroscopic notation, the lowest singlet and triplet forms of O2 are labeled 1Δg and 3Σ, respectively.


Electronic structure

Singlet oxygen refers to one of two singlet electronic excited states. The two singlet states are denoted 1Σ and 1Δg (the preceding superscript "1" indicates a singlet state). The singlet states of oxygen are 158 and 95 kilojoules per mole higher in energy than the triplet ground state of oxygen. Under most common laboratory conditions, the higher energy 1Σ singlet state rapidly converts to the more stable, lower energy 1Δg singlet state. This more stable of the two excited states has its two valence electrons spin-paired in one π* orbital while the second π* orbital is empty. This state is referred to by the title term, ''singlet oxygen'', commonly abbreviated 1O2, to distinguish it from the triplet ground state molecule, 3O2.
Molecular orbital theory In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. In molecular orbital theory, electrons in a molec ...
predicts the electronic ground state denoted by the molecular term symbol 3Σ, and two low-lying excited singlet states with term symbols 1Δg and 1Σ. These three electronic states differ only in the spin and the occupancy of oxygen's two
antibonding In chemical bonding theory, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more no ...
πg-orbitals, which are degenerate (equal in energy). These two orbitals are classified as
antibonding In chemical bonding theory, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more no ...
and are of higher energy. Following Hund's first rule, in the ground state, these electrons are unpaired and have like (same) spin. This open-shell triplet ground state of molecular oxygen differs from most stable diatomic molecules, which have singlet (1Σ) ground states. Two less stable, higher energy
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to ...
s are readily accessible from this ground state, again in accordance with Hund's first rule; the first moves one of the high energy unpaired ground state electrons from one degenerate orbital to the other, where it "flips" and pairs the other, and creates a new state, a singlet state referred to as the 1Δg state (a
term symbol In quantum mechanics, the term symbol is an abbreviated description of the (total) angular momentum quantum numbers in a multi-electron atom (however, even a single electron can be described by a term symbol). Each energy level of an atom with a giv ...
, where the preceding superscripted "1" indicates it as a singlet state). Alternatively, both electrons can remain in their degenerate ground state orbitals, but the spin of one can "flip" so that it is now opposite to the second (i.e., it is still in a separate degenerate orbital, but no longer of like spin); this also creates a new state, a singlet state referred to as the 1Σ state. The ground and first two singlet excited states of oxygen can be described by the simple scheme in the figure below. The 1Δg singlet state is 7882.4 cm−1 above the triplet 3Σ ground state., which in other units corresponds to 94.29 kJ/mol or 0.9773 eV. The 1Σ singlet is 13 120.9 cm−1 (157.0 kJ/mol or 1.6268 eV) above the ground state. Radiative transitions between the three low-lying electronic states of oxygen are formally forbidden as electric dipole processes. The two singlet-triplet transitions are forbidden both because of the spin
selection rule In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, ...
ΔS = 0 and because of the
parity Parity may refer to: * Parity (computing) ** Parity bit in computing, sets the parity of data for the purpose of error detection ** Parity flag in computing, indicates if the number of set bits is odd or even in the binary representation of the ...
rule that g-g transitions are forbidden. The singlet-singlet transition between the two excited states is spin-allowed but parity-forbidden. The lower, O2(1Δg) state is commonly referred to as ''singlet oxygen''. The energy difference of 94.3 kJ/mol between ground state and singlet oxygen corresponds to a forbidden singlet-triplet transition in the near-
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
at ~1270 nm. As a consequence, singlet oxygen in the gas phase is relatively long lived (54-86 milliseconds), although interaction with solvents reduces the lifetime to microseconds or even nanoseconds. In 2021, the lifetime of airborne singlet oxygen at air/solid interfaces was measured to be 550 microseconds. The higher 1Σ state is very short lived. In the gas phase, it relaxes primarily to the ground state triplet with a mean lifetime of 11.8 s. However in solvents such as CS2 and CCl4, it relaxes to the lower singlet 1Δg in milliseconds due to nonradiative decay channels.


Paramagnetism due to orbital angular momentum

Both singlet oxygen states have no unpaired electrons and therefore no net electron spin. The 1Δg is however paramagnetic as shown by the observation of an
electron paramagnetic resonance Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spin ...
(EPR) spectrum. The paramagnetism of the 1Δg state is due to a net ''orbital'' (and not spin) electronic angular momentum. In a magnetic field the degeneracy of the M_L levels is split into two levels with z projections of angular momenta +1 ''ħ'' and −1''ħ'' around the molecular axis. The magnetic transition between these levels gives rise to the g=1 EPR transition.


Production

Various methods for the production of singlet oxygen exist. Irradiation of oxygen gas in the presence of an organic dye as a sensitizer, such as
rose bengal Rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein) is a stain. Rose bengal belongs to the class of organic compounds called xanthenes. Its sodium salt is commonly used in eye drops to stain damaged conjunctival and corneal cells ...
,
methylene blue Methylthioninium chloride, commonly called methylene blue, is a salt used as a dye and as a medication. Methylene blue is a thiazine dye. As a medication, it is mainly used to treat methemoglobinemia by converting the ferric iron in hemoglobin ...
, or porphyrins—a photochemical method—results in its production. Large steady state concentrations of singlet oxygen are reported from the reaction of triplet excited state
pyruvic acid Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic aci ...
with dissolved oxygen in water. Singlet oxygen can also be produced in non-photochemical, preparative chemical procedures. One chemical method involves the decomposition of triethylsilyl hydrotrioxide generated ''in situ'' from
triethylsilane Triethylsilane is the organosilicon compound with the formula (C2H5)3SiH. It is a trialkylsilane. The Si-H bond is reactive. This colorless liquid is used in organic synthesis as a reducing agent and as a precursor to silyl ethers. As one of the ...
and ozone. :(C2H5)3SiH + O3 → (C2H5)3SiOOOH → (C2H5)3SiOH + O2(1Δg) Another method uses the aqueous reaction of
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3 ...
with sodium hypochlorite: : H2O2 + NaOCl → O2(1Δg) + NaCl + H2O A third method liberates singlet oxygen via phosphite ozonides, which are, in turn, generated '' in situ'' such as triphenyl phosphite ozonide. Phosphite ozonides will decompose to give singlet oxygen: :(RO)3P + O3 → (RO)3PO3 :(RO)3PO3 → (RO)3PO + O2(1Δg) An advantage of this method is that it is amenable to non-aqueous conditions.


Reactions

Because of differences in their electron shells, singlet and triplet oxygen differ in their chemical properties; singlet oxygen is highly reactive. The lifetime of singlet oxygen depends on the medium. In normal organic solvents, the lifetime is only a few microseconds whereas in solvents lacking C-H bonds, the lifetime can be as long as seconds.


Organic chemistry

Unlike ground state oxygen, singlet oxygen participates in Diels–Alder +2 and +2
cycloaddition In organic chemistry, a cycloaddition is a chemical reaction in which "two or more unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic adduct in which there is a net reduction of the bond multiplicity" ...
reactions and formal concerted ene reactions. It oxidizes thioethers to sulfoxides.
Organometallic Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and s ...
complexes are often degraded by singlet oxygen. With some substrates 1,2-dioxetanes are formed; cyclic dienes such as 1,3-cyclohexadiene form +2
cycloaddition In organic chemistry, a cycloaddition is a chemical reaction in which "two or more unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic adduct in which there is a net reduction of the bond multiplicity" ...
adducts. The +2cycloaddition between singlet oxygen and furans is widely used in
organic synthesis Organic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one o ...
. In singlet oxygen reactions with alkenic
allyl group In organic chemistry, an allyl group is a substituent with the structural formula , where R is the rest of the molecule. It consists of a methylene bridge () attached to a vinyl group (). The name is derived from the scientific name for garlic, . ...
s, e.g., citronella, shown, by abstraction of the
allylic In organic chemistry, an allyl group is a substituent with the structural formula , where R is the rest of the molecule. It consists of a methylene bridge () attached to a vinyl group (). The name is derived from the scientific name for garlic, . ...
proton, in an ene-like reaction, yielding the allyl
hydroperoxide Hydroperoxides or peroxols are compounds containing the hydroperoxide functional group (ROOH). If the R is organic, the compounds are called organic hydroperoxides. Such compounds are a subset of organic peroxides, which have the formula ROOR. ...
, R–O–OH (R =
alkyl In organic chemistry, an alkyl group is an alkane missing one hydrogen. The term ''alkyl'' is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of . A cycloalkyl is derived from a cycloa ...
), which can then be reduced to the corresponding allylic alcohol. In reactions with water
trioxidane Trioxidane (systematically named μ-trioxidanediidodihydrogen), also called dihydrogen trioxide, is an inorganic compound with the chemical formula (can be written as or ). It is one of the unstable hydrogen polyoxides. In aqueous solutions, ...
, an unusual molecule with three consecutive linked oxygen atoms, is formed.


Biochemistry

In
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
, singlet oxygen can be produced from the light-harvesting
chlorophyll Chlorophyll (also chlorophyl) is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words , ("pale green") and , ("leaf"). Chlorophyll allow plants to ...
molecules. One of the roles of
carotenoid Carotenoids (), also called tetraterpenoids, are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, ...
s in photosynthetic systems is to prevent damage caused by produced singlet oxygen by either removing excess
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
energy from
chlorophyll Chlorophyll (also chlorophyl) is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words , ("pale green") and , ("leaf"). Chlorophyll allow plants to ...
molecules or quenching the singlet oxygen molecules directly. In
mammal Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur ...
ian
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
, singlet oxygen is one of the reactive oxygen species, which is linked to oxidation of LDL
cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell memb ...
and resultant cardiovascular effects.
Polyphenol antioxidant A polyphenol antioxidant is a hypothetical type of antioxidant containing a polyphenolic substructure and studied in vitro. Numbering over 4,000 distinct species mostly from plants, polyphenols may have antioxidant activity in vitro, but are unlik ...
s can scavenge and reduce concentrations of reactive oxygen species and may prevent such deleterious oxidative effects. Ingestion of pigments capable of producing singlet oxygen with activation by light can produce severe photosensitivity of skin (see phototoxicity, photosensitivity in humans, photodermatitis, phytophotodermatitis). This is especially a concern in herbivorous animals (see Photosensitivity in animals). Singlet oxygen is the active species in photodynamic therapy.


Analytical and physical chemistry

Direct detection of singlet oxygen is possible using sensitive laser spectroscopy or through its extremely weak
phosphorescence Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluo ...
at 1270 nm, which is not visible. However, at high singlet oxygen concentrations, the
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
of the singlet oxygen "dimol" species—simultaneous emission from two singlet oxygen molecules upon collision—can be observed as a red glow at 634 nm and 703 nm.


References


Further reading

* Bodner, G.M. (2002) ''Lecture Demonstration Movie Sheets: 8.4 Liquid Oxygen—Paramagnetism and Color,'' West Lafayette, IN, USA: Purdue University Department of Chemistry, se
Liquid Oxygen---Paramagnetism and Color
an

accessed 11 August 2015; alternatively, see Bodner, G.M.; K. Keyes & T.J. Greenbowe (1995) ''Purdue University Lecture Demonstration Manual,'' 2nd Edn, p. TBD, New York, NY, USA: John Wiley and Sons. arlier appearing reference on magnetic properties of oxygen states.


External links


The NIST webbook on oxygen




{{DEFAULTSORT:Singlet Oxygen Oxidizing agents Physical chemistry Allotropes of oxygen Reactive oxygen species