HOME

TheInfoList



OR:

The self-ionization of water (also autoionization of water, and autodissociation of water) is an
ionization Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecul ...
reaction in
pure water Purified water is water that has been mechanically filtered or processed to remove impurities and make it suitable for use. Distilled water was, formerly, the most common form of purified water, but, in recent years, water is more frequently puri ...
or in an
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be r ...
, in which a water molecule, H2O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. ...
ion, OH. The hydrogen nucleus, H+, immediately protonates another water molecule to form a
hydronium In chemistry, hydronium (hydroxonium in traditional British English) is the common name for the aqueous cation , the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid ...
cation, H3O+. It is an example of
autoprotolysis In chemistry, autoprotolysis is a chemical reaction in which a proton is transferred between two identical molecules, one of which acts as a Brønsted acid, releasing a proton which is accepted by the other molecule acting as a Brønsted bas ...
, and exemplifies the amphoteric nature of water.


History and notation

The self-ionization of water was first proposed in 1884 by
Svante Arrhenius Svante August Arrhenius ( , ; 19 February 1859 – 2 October 1927) was a Swedish scientist. Originally a physicist, but often referred to as a chemist, Arrhenius was one of the founders of the science of physical chemistry. He received the Nob ...
as part of the theory of ionic dissociation which he proposed to explain the conductivity of
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon ...
s including water. Arrhenius wrote the self-ionization as H2O <=> H+ + OH-. At that time, nothing was yet known of atomic structure or subatomic particles, so he had no reason to consider the formation of an H+ ion from a hydrogen atom on electrolysis as any less likely than, say, the formation of a Na+ ion from a sodium atom. In 1923
Johannes Nicolaus Brønsted Johannes Nicolaus Brønsted (; 22 February 1879 – 17 December 1947) was a Danish physical chemist, who developed the Brønsted–Lowry acid–base theory simultaneously with and independently of Martin Lowry. Biography Brønsted was born ...
and
Martin Lowry Thomas Martin Lowry (; 26 October 1874 – 2 November 1936) was an English physical chemist who developed the Brønsted–Lowry acid–base theory simultaneously with and independently of Johannes Nicolaus Brønsted and was a founder-member ...
proposed that the self-ionization of water actually involves two water molecules: H2O + H2O <=> H3O+ + OH-. By this time the electron and the nucleus had been discovered and Rutherford had shown that a nucleus is very much smaller than an atom. This would include a bare ion H+ which would correspond to a proton with zero electrons. Brønsted and Lowry proposed that this ion does not exist free in solution, but always attaches itself to a water (or other solvent) molecule to form the
hydronium In chemistry, hydronium (hydroxonium in traditional British English) is the common name for the aqueous cation , the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid ...
ion H3O+ (or other protonated solvent). Later spectroscopic evidence has shown that many protons are actually hydrated by more than one water molecule. The most descriptive notation for the hydrated ion is H+(aq), where aq (for aqueous) indicates an indefinite or variable number of water molecules. However the notations H+ and H3O+ are still also used extensively because of their historical importance. This article mostly represents the hydrated proton as H3O+, corresponding to hydration by a single water molecule.


Equilibrium constant

Chemically pure water has an
electrical Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
conductivity of 0.055 μ S/cm. According to the theories of
Svante Arrhenius Svante August Arrhenius ( , ; 19 February 1859 – 2 October 1927) was a Swedish scientist. Originally a physicist, but often referred to as a chemist, Arrhenius was one of the founders of the science of physical chemistry. He received the Nob ...
, this must be due to the presence of ions. The ions are produced by the water self-ionization reaction, which applies to pure water and any aqueous solution: : H2O + H2O H3O+ + OH Expressed with chemical activities , instead of concentrations, the thermodynamic
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
for the water ionization reaction is: :K_ = \frac which is numerically equal to the more traditional thermodynamic equilibrium constant written as: :K_ = \frac under the assumption that the sum of the chemical potentials of H+ and H3O+ is formally equal to twice the chemical potential of H2O at the same temperature and pressure. Because most acid–base solutions are typically very dilute, the activity of water is generally approximated as being equal to unity, which allows the ionic product of water to be expressed as: :K_ \approx a_ \cdot a_ In dilute aqueous solutions, the activities of solutes (dissolved species such as ions) are approximately equal to their concentrations. Thus, the ''ionization constant'', ''dissociation constant'', ''self-ionization constant'', ''water ion-product constant'' or ''ionic product'' of water, symbolized by ''K''w, may be given by: :K_=[][] where [H3O+] is the molarity (molar concentration) of Hydron (chemistry), hydrogen cation or hydronium ion, and [OH] is the concentration of
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. ...
ion. When the equilibrium constant is written as a product of concentrations (as opposed to activities) it is necessary to make corrections to the value of K_ depending on
ionic strength The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such a ...
and other factors (see below). At 24.87 °C and zero
ionic strength The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such a ...
, ''K''w is equal to . Note that as with all equilibrium constants, the result is dimensionless because the concentration is in fact a concentration relative to the
standard state In chemistry, the standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions. A superscript circle ° (degree symbol) or a Plimsoll (⦵) character is use ...
, which for H+ and OH are both defined to be 1 molal (= 1 mol/kg) when molality is used or 1 molar (= 1 mol/L) when molar concentration is used. For many practical purposes, the molality (mol solute/kg water) and molar (mol solute/L solution) concentrations can be considered as nearly equal at ambient temperature and pressure if the solution density remains close to one (''i.e.'', sufficiently diluted solutions and negligible effect of temperature changes). The main advantage of the molal concentration unit (mol/kg water) is to result in stable and robust concentration values which are independent of the solution density and volume changes (density depending on the water salinity (
ionic strength The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such a ...
), temperature and pressure); therefore,
molality Molality is a measure of the number of moles of solute in a solution corresponding to 1 kg or 1000 g of solvent. This contrasts with the definition of molarity which is based on a specified volume of solution. A commonly used unit for molali ...
is the preferred unit used in thermodynamic calculations or in precise or less-usual conditions, e.g., for
seawater Seawater, or salt water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has appro ...
with a density significantly different from that of pure water, or at elevated temperatures, like those prevailing in thermal power plants. We can also define p''K''w \equiv −log10 ''K''w (which is approximately 14 at 25 °C). This is analogous to the notations pH and p''K''a for an
acid dissociation constant In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction :HA ...
, where the symbol p denotes a
cologarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...
. The logarithmic form of the equilibrium constant equation is p''K''w = pH + pOH.


Dependence on temperature, pressure and ionic strength

The dependence of the water ionization on temperature and pressure has been investigated thoroughly. The value of p''K''w decreases as temperature increases from the melting point of ice to a minimum at c. 250 °C, after which it increases up to the critical point of water c. 374 °C. It decreases with increasing pressure. With
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon ...
solutions, the value of p''K''w is dependent on
ionic strength The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such a ...
of the electrolyte. Values for
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35. ...
are typical for a 1:1 electrolyte. With 1:2 electrolytes, MX2, p''K''w decreases with increasing ionic strength. The value of ''K''w is usually of interest in the
liquid phase A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, ...
. Example values for
superheated steam Superheated steam is steam at a temperature higher than its vaporization point at the absolute pressure where the temperature is measured. Superheated steam can therefore cool (lose internal energy) by some amount, resulting in a lowering of ...
(gas) and
supercritical water Supercritical water oxidation (SCWO) is a process that occurs in water at temperatures and pressures above a mixture's thermodynamic critical point. Under these conditions water becomes a fluid with unique properties that can be used to advantag ...
fluid are given in the table. : :''Notes to the table. The values are for supercritical fluid except those marked: a at saturation pressure corresponding to 350 °C. b superheated steam. c compressed or subcooled liquid.''


Isotope effects

Heavy water, D2O, self-ionizes less than normal water, H2O; :D2O + D2O D3O+ + OD This is due to the equilibrium isotope effect, a quantum mechanical effect attributed to oxygen forming a slightly stronger bond to
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
because the larger mass of deuterium results in a lower
zero-point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty pri ...
. Expressed with activities ''a'', instead of concentrations, the thermodynamic equilibrium constant for the heavy water ionization reaction is: :K_ = \frac Assuming the activity of the D2O to be 1, and assuming that the activities of the D3O+ and OD are closely approximated by their concentrations :K_=[][] The following table compares the values of p''K''w for H2O and D2O. :


Ionization equilibria in water–heavy water mixtures

In water–heavy water mixtures equilibria several species are involved: H2O, HDO, D2O, H3O+, D3O+, H2DO+, HD2O+, HO, DO.


Mechanism

The rate of reaction for the ionization reaction :2 H2O → H3O+ + OH depends on the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
, Δ''E''. According to the Boltzmann distribution the proportion of water molecules that have sufficient energy, due to thermal population, is given by :\frac = e^ where ''k'' is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constan ...
. Thus some dissociation can occur because sufficient thermal energy is available. The following sequence of events has been proposed on the basis of
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
fluctuations in liquid water. Random fluctuations in molecular motions occasionally (about once every 10 hours per water molecule) produce an electric field strong enough to break an oxygen–hydrogen
bond Bond or bonds may refer to: Common meanings * Bond (finance), a type of debt security * Bail bond, a commercial third-party guarantor of surety bonds in the United States * Chemical bond, the attraction of atoms, ions or molecules to form chemical ...
, resulting in a hydroxide (OH) and hydronium ion (H3O+); the hydrogen nucleus of the hydronium ion travels along water molecules by the
Grotthuss mechanism The Grotthuss mechanism (also known as proton jumping) is the process by which an 'excess' proton or proton defect diffuses through the hydrogen bond network of water molecules or other hydrogen-bonded liquids through the formation and concomitant ...
and a change in the
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a l ...
network in the solvent isolates the two ions, which are stabilized by solvation. Within 1 
picosecond A picosecond (abbreviated as ps) is a unit of time in the International System of Units (SI) equal to 10−12 or (one trillionth) of a second. That is one trillionth, or one millionth of one millionth of a second, or 0.000 000 000&nbs ...
, however, a second reorganization of the hydrogen bond network allows rapid proton transfer down the electric potential difference and subsequent recombination of the ions. This timescale is consistent with the time it takes for hydrogen bonds to reorientate themselves in water. The inverse recombination reaction :H3O+ + OH → 2 H2O is among the fastest chemical reactions known, with a
reaction rate constant In chemical kinetics a reaction rate constant or reaction rate coefficient, ''k'', quantifies the rate and direction of a chemical reaction. For a reaction between reactants A and B to form product C the reaction rate is often found to have the ...
of at room temperature. Such a rapid rate is characteristic of a diffusion-controlled reaction, in which the rate is limited by the speed of molecular
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical ...
.


Relationship with the neutral point of water

Water molecules dissociate into equal amounts of H3O+ and OH, so their concentrations are almost exactly at 25 °C and 0.1 MPa. A solution in which the H3O+ and OH concentrations equal each other is considered a neutral solution. In general, the pH of the neutral point is numerically equal to p''K''w. Pure water is neutral, but most water samples contain impurities. If an impurity is an
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a se ...
or base, this will affect the concentrations of hydronium ion and hydroxide ion. Water samples that are exposed to air will absorb some
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
to form carbonic acid (H2CO3) and the concentration of H3O+ will increase due to the reaction H2CO3 + H2O = HCO3 + H3O+. The concentration of OH will decrease in such a way that the product 3O+OH] remains constant for fixed temperature and pressure. Thus these water samples will be slightly acidic. If a pH of exactly 7.0 is required, it must be maintained with an appropriate
buffer solution A buffer solution (more precisely, pH buffer or hydrogen ion buffer) is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small amount of strong acid or base is ...
.


See also

*
Acid–base reaction An acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their appl ...
*
Chemical equilibrium In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the ...
*
Molecular autoionization In chemistry, molecular autoionization (or self-ionization) is a chemical reaction between molecules of the same substance to produce ions. If a pure liquid partially dissociates into ions, it is said to be self-ionizing. In most cases the oxida ...
(of various solvents) *
Standard hydrogen electrode The standard hydrogen electrode (abbreviated SHE), is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. Its absolute electrode potential is estimated to be at 25 °C, but to form a basis ...


References


External links


General Chemistry
nbsp;– Autoionization of Water {{DEFAULTSORT:Self-Ionization Of Water Ionization Water chemistry Equilibrium chemistry
Water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
de:Protolyse#Autoprotolyse