HOME

TheInfoList



OR:

A sednoid is a
trans-Neptunian object A trans-Neptunian object (TNO), also written transneptunian object, is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune, which has a semi-major axis of 30.1 astronomical units (au). Typically ...
with a
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
well beyond the
Kuiper cliff The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 tim ...
at . Only four objects are known from this population:
90377 Sedna Sedna ( minor-planet designation 90377 Sedna) is a dwarf planet in the outer reaches of the Solar System that is in the innermost part of its orbit; it is 84 astronomical units (AU), or 1.26×1010 km, from the Sun, almost three times fart ...
, , 541132 Leleākūhonua (), and , but it is suspected that there are many more. All four have perihelia greater than . These objects lie outside an apparently nearly empty gap in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
and have no significant interaction with the planets. They are usually grouped with the
detached object Detached objects are a dynamical class of minor planets in the outer reaches of the Solar System and belong to the broader family of trans-Neptunian objects (TNOs). These objects have orbits whose points of closest approach to the Sun ( perihel ...
s. Some astronomers, such as Scott Sheppard, consider the sednoids to be inner Oort cloud objects (OCOs), though the inner Oort cloud, or Hills cloud, was originally predicted to lie beyond 2,000 AU, beyond the aphelia of the three known sednoids. One attempt at a precise definition of sednoids is any body with a
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
greater than and a
semi-major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the lon ...
greater than . However, this definition applies to objects such as , which has a perihelion at 50.02 AU and a semi-major axis of about 700 AU but it is thought to not belong to the Sednoids, but rather to the same dynamical class as
474640 Alicanto 474640 Alicanto, provisionally designated , is a detached extreme trans-Neptunian object. It was discovered on 6 November 2004, by American astronomer Andrew C. Becker at Cerro Tololo Inter-American Observatory in Chile. It never gets closer t ...
, and . With their high eccentricities (greater than 0.8), sednoids are distinguished from the high-perihelion objects with moderate eccentricities that are in a stable resonance with Neptune, namely , , ("Buffy"), and .


Unexplained orbits

The sednoids' orbits cannot be explained by perturbations from the
giant planet The giant planets constitute a diverse type of planet much larger than Earth. They are usually primarily composed of low-boiling-point materials (volatiles), rather than rock or other solid matter, but massive solid planets can also exist. The ...
s, nor by interaction with the
galactic tide A galactic tide is a tidal force experienced by objects subject to the gravitational field of a galaxy such as the Milky Way. Particular areas of interest concerning galactic tides include galactic collisions, the disruption of dwarf or satelli ...
s. If they formed in their current locations, their orbits must originally have been circular; otherwise
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
(the coalescence of smaller bodies into larger ones) would not have been possible because the large relative velocities between planetesimals would have been too disruptive. Their present elliptical orbits can be explained by several hypotheses: # These objects could have had their orbits and
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
distances "lifted" by the passage of a nearby star when the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
was still embedded in its birth star cluster. # Their orbits could have been disrupted by an as-yet-unknown planet-sized body beyond the
Kuiper belt The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 tim ...
such as the hypothesized
Planet Nine Planet Nine is a hypothetical planet in the outer region of the Solar System. Its gravitational effects could explain the peculiar clustering of orbits for a group of extreme trans-Neptunian objects (ETNOs), bodies beyond Neptune that orbit ...
. # They could have been captured from around passing stars, most likely in the Sun's birth cluster.


Known members

The first three known sednoids, like all of the more extreme detached objects (objects with semi-major axes > 150 AU and perihelia > 30 AU; the orbit of
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
), have a similar orientation ( argument of perihelion) of ≈ 0° (). This is not due to an observational bias and is unexpected, because interaction with the giant planets should have randomized their arguments of perihelion (ω), with precession periods between 40 Myr and 650 Myr and 1.5 Gyr for Sedna. This suggests that one or more undiscovered massive perturbers may exist in the outer Solar System. A
super-Earth A super-Earth is an extrasolar planet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to ...
at 250 AU would cause these objects to librate around ω = for billions of years. There are multiple possible configurations and a low-albedo super-Earth at that distance would have an
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
below the current all-sky-survey detection limits. This hypothetical super-Earth has been dubbed
Planet Nine Planet Nine is a hypothetical planet in the outer region of the Solar System. Its gravitational effects could explain the peculiar clustering of orbits for a group of extreme trans-Neptunian objects (ETNOs), bodies beyond Neptune that orbit ...
. Larger, more-distant perturbers would also be too faint to be detected. , 27 known objects have a semi-major axis greater than 150 AU, a perihelion beyond Neptune, an argument of perihelion of , and an
observation arc In observational astronomy, the observation arc (or arc length) of a Solar System body is the time period between its earliest and latest observations, used for tracing the body's path. It is usually given in days or years. The term is mostly use ...
of more than 1 year. , , , , , and are near the limit of perihelion of 50 AU, but are not considered sednoids. On 1 October 2018, Leleākūhonua, then known as , was announced with perihelion of 65 AU and a semimajor axis of 1094 AU. With an aphelion over 2100 AU, it brings the object further out than Sedna. In late 2015, V774104 was announced at the Division for Planetary Science conference as a further candidate sednoid, but its
observation arc In observational astronomy, the observation arc (or arc length) of a Solar System body is the time period between its earliest and latest observations, used for tracing the body's path. It is usually given in days or years. The term is mostly use ...
was too short to know whether its perihelion was even outside Neptune's influence. The talk about V774104 was probably meant to refer to Leleākūhonua () even though V774104 is the internal designation for non-sednoid . Sednoids might constitute a proper dynamical class, but they may have a heterogeneous origin; the spectral slope of is very different from that of 90377 Sedna. Malena Rice and Gregory Laughlin applied a targeted shift-stacking search algorithm to analyze data from
TESS Tess or TESS may refer to: Music * Tess (band), a Spanish pop band active from 2000 to 2005 * TESS (musician), a UK musician Film and theatre * ''Tess'' (1979 film), a 1979 film adaptation of '' Tess of the d'Urbervilles'' * ''Tess'' (2016 fil ...
sectors 18 and 19 looking for candidate outer solar system objects. Their search recovered known objects like Sedna and produced 17 new outer Solar system body candidates located at geocentric distances in the range 80–200 AU, that need follow-up observations with ground-based telescope resources for confirmation. Early results from a survey with WHT aimed at recovering these distant TNO candidates have failed to confirm two of them.


Theoretical population

Each of the proposed mechanisms for Sedna's extreme orbit would leave a distinct mark on the structure and dynamics of any wider population. If a trans-Neptunian planet were responsible, all such objects would share roughly the same perihelion (≈80 AU). If Sedna had been captured from another planetary system that rotated in the same direction as the Solar System, then all of its population would have orbits on relatively low inclinations and have semi-major axes ranging from 100–500 AU. If it rotated in the opposite direction, then two populations would form, one with low and one with high inclinations. The perturbations from passing stars would produce a wide variety of perihelia and inclinations, each dependent on the number and angle of such encounters. Acquiring a larger sample of such objects would therefore help in determining which scenario is most likely. "I call Sedna a fossil record of the earliest Solar System", said Brown in 2006. "Eventually, when other fossil records are found, Sedna will help tell us how the Sun formed and the number of stars that were close to the Sun when it formed." A 2007–2008 survey by Brown, Rabinowitz and Schwamb attempted to locate another member of Sedna's hypothetical population. Although the survey was sensitive to movement out to 1,000 AU and discovered the likely dwarf planet Gonggong, it detected no new sednoids. Subsequent simulations incorporating the new data suggested about 40 Sedna-sized objects probably exist in this region, with the brightest being about Eris's magnitude (−1.0). Following the discovery of Leleākūhonua, Sheppard et al. concluded that it implies a population of about 2 million Inner Oort Cloud objects larger than 40 km, with a total mass in the range of , about the mass of
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the S ...
and several times the mass of the
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, c ...
.


See also

* Trans-Neptunian objects category


References


External links

*
New icy body hints at planet lurking beyond Pluto
{{Portal bar, Astronomy, Spaceflight, Outer space, Solar system