HOME

TheInfoList



OR:

Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of
applied mathematics Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical ...
,
applied science Applied science is the use of the scientific method and knowledge obtained via conclusions from the method to attain practical goals. It includes a broad range of disciplines such as engineering and medicine. Applied science is often contrasted ...
, and types of application. See
glossary of engineering This glossary is split across multiple pages due to technical limitations. By Alphabetical Order * Glossary of engineering: A-L * Glossary of engineering: M–Z By Category * Glossary of civil engineering * Glossary of electrical and elect ...
. The term ''engineering'' is derived from the Latin ''ingenium'', meaning "cleverness" and ''ingeniare'', meaning "to contrive, devise".


Definition

The
American Engineers' Council for Professional Development The American Engineers' Council for Professional Development or simply the Engineers' Council for Professional Development (ECPD), established in June 1932, was an engineering professional body dedicated to the education, accreditation, regulation ...
(ECPD, the predecessor of
ABET The ABET (incorporated as the Accreditation Board for Engineering and Technology, Inc.) is a non-governmental organization that accredits post-secondary education programs in applied and natural sciences, computing, engineering and engineerin ...
) has defined "engineering" as:
The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property.
(Includes Britannica article on Engineering)


History

Engineering has existed since ancient times, when humans devised inventions such as the wedge, lever, wheel and pulley, etc. The term ''engineering'' is derived from the word ''engineer'', which itself dates back to the 14th century when an ''engine'er'' (literally, one who builds or operates a ''
siege engine A siege engine is a device that is designed to break or circumvent heavy castle doors, thick city walls and other fortifications in siege warfare. Some are immobile, constructed in place to attack enemy fortifications from a distance, while othe ...
'') referred to "a constructor of military engines." In this context, now obsolete, an "engine" referred to a military machine, ''i.e.'', a mechanical contraption used in war (for example, a
catapult A catapult is a ballistic device used to launch a projectile a great distance without the aid of gunpowder or other propellants – particularly various types of ancient and medieval siege engines. A catapult uses the sudden release of stored ...
). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, ''e.g.'', the
U.S. Army Corps of Engineers , colors = , anniversaries = 16 June (Organization Day) , battles = , battles_label = Wars , website = , commander1 = ...
. The word "engine" itself is of even older origin, ultimately deriving from the Latin ''ingenium'' (c. 1250), meaning "innate quality, especially mental power, hence a clever invention." Later, as the design of civilian structures, such as bridges and buildings, matured as a technical discipline, the term civil engineering entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the discipline of
military engineering Military engineering is loosely defined as the art, science, and practice of designing and building military works and maintaining lines of military transport and military communications. Military engineers are also responsible for logistics b ...
.


Ancient era

The
pyramids A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilate ...
in ancient Egypt,
ziggurats A ziggurat (; Cuneiform: 𒅆𒂍𒉪, Akkadian: ', D-stem of ' 'to protrude, to build high', cognate with other Semitic languages like Hebrew ''zaqar'' (זָקַר) 'protrude') is a type of massive structure built in ancient Mesopotamia. It ha ...
of Mesopotamia, the
Acropolis An acropolis was the settlement of an upper part of an ancient Greek city, especially a citadel, and frequently a hill with precipitous sides, mainly chosen for purposes of defense. The term is typically used to refer to the Acropolis of Athens, ...
and Parthenon in Greece, the Roman aqueducts,
Via Appia The Appian Way (Latin and Italian: ''Via Appia'') is one of the earliest and strategically most important Roman roads of the ancient republic. It connected Rome to Brindisi, in southeast Italy. Its importance is indicated by its common name, r ...
and Colosseum, Teotihuacán, and the
Brihadeeswarar Temple Brihadishvara Temple, called Rajarajesvaram () by its builder, and known locally as ''Thanjai Periya Kovil'' ("Thanjavur Big Temple") and ''Peruvudaiyar Kovil'', is a Shaivite Hindu temple built in a Chola architectural style located on the ...
of Thanjavur, among many others, stand as a testament to the ingenuity and skill of ancient civil and military engineers. Other monuments, no longer standing, such as the Hanging Gardens of Babylon and the Pharos of Alexandria, were important engineering achievements of their time and were considered among the Seven Wonders of the Ancient World. The six classic simple machines were known in the
ancient Near East The ancient Near East was the home of early civilizations within a region roughly corresponding to the modern Middle East: Mesopotamia (modern Iraq, southeast Turkey, southwest Iran and northeastern Syria), ancient Egypt, ancient Iran (Elam, ...
. The wedge and the inclined plane (ramp) were known since
prehistoric Prehistory, also known as pre-literary history, is the period of human history between the use of the first stone tools by hominins 3.3 million years ago and the beginning of recorded history with the invention of writing systems. The use o ...
times. The wheel, along with the wheel and axle mechanism, was invented in Mesopotamia (modern Iraq) during the 5th millennium BC. The
lever A lever is a simple machine consisting of a beam or rigid rod pivoted at a fixed hinge, or '' fulcrum''. A lever is a rigid body capable of rotating on a point on itself. On the basis of the locations of fulcrum, load and effort, the lever is ...
mechanism first appeared around 5,000 years ago in the Near East, where it was used in a simple
balance scale A scale or balance is a device used to measure weight or mass. These are also known as mass scales, weight scales, mass balances, and weight balances. The traditional scale consists of two plates or bowls suspended at equal distances from a ...
, and to move large objects in
ancient Egyptian technology Ancient Egyptian technology describes devices and technologies invented or used in Ancient Egypt. The Egyptians invented and used many simple machines, such as the ramp and the lever, to aid construction processes. They used rope trusses to stiff ...
. The lever was also used in the
shadoof A shadoof or shaduf (from the Arabic word , ''šādūf'') is an irrigation tool. It is highly efficient, and has been known since 3000 BCE. Names It is also called a lift, well pole, well sweep, or simply a sweep in the US.Knight, Edward Henry ...
water-lifting device, the first crane machine, which appeared in Mesopotamia circa 3000 BC, and then in
ancient Egyptian technology Ancient Egyptian technology describes devices and technologies invented or used in Ancient Egypt. The Egyptians invented and used many simple machines, such as the ramp and the lever, to aid construction processes. They used rope trusses to stiff ...
circa 2000 BC. The earliest evidence of
pulley A pulley is a wheel on an axle or shaft that is designed to support movement and change of direction of a taut cable or belt, or transfer of power between the shaft and cable or belt. In the case of a pulley supported by a frame or shell that ...
s date back to Mesopotamia in the early 2nd millennium BC, and ancient Egypt during the
Twelfth Dynasty The Twelfth Dynasty of ancient Egypt (Dynasty XII) is considered to be the apex of the Middle Kingdom by Egyptologists. It often is combined with the Eleventh, Thirteenth, and Fourteenth dynasties under the group title, Middle Kingdom. Some ...
(1991-1802 BC). The screw, the last of the simple machines to be invented, first appeared in Mesopotamia during the Neo-Assyrian period (911-609) BC. The Egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the
Great Pyramid of Giza The Great Pyramid of Giza is the biggest Egyptian pyramids, Egyptian pyramid and the tomb of Fourth Dynasty of Egypt, Fourth Dynasty pharaoh Khufu. Built in the early 26th century BC during a period of around 27 years, the pyramid is the oldes ...
. The earliest civil engineer known by name is Imhotep. As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630–2611 BC. The earliest practical water-powered machines, the
water wheel A water wheel is a machine for converting the energy of flowing or falling water into useful forms of power, often in a watermill. A water wheel consists of a wheel (usually constructed from wood or metal), with a number of blades or bucke ...
and watermill, first appeared in the Persian Empire, in what are now Iraq and Iran, by the early 4th century BC.
Kush Kush or Cush may refer to: Bible * Cush (Bible), two people and one or more places in the Hebrew Bible Places * Kush (mountain), a mountain near Kalat, Pakistan Balochistan * Kush (satrapy), a satrapy of the Achaemenid Empire * Hindu Kush, a ...
developed the
Sakia A sāqiyah or saqiya ( ar, ساقية), also spelled sakia or saqia) is a mechanical water lifting device. It is also called a Persian wheel, tablia, rehat, and in Latin tympanum. It is similar in function to a scoop wheel, which uses buckets, ...
during the 4th century BC, which relied on animal power instead of human energy.
Hafirs A hafir is an artificially constructed water catchment basin with a circular earthen wall and diameters of between 70-250 m and heights of up to 7 m. Adapted to semi-desert conditions, the hafirs catch the water during the rainy season to ...
were developed as a type of reservoir in Kush to store and contain water as well as boost irrigation.Fritz Hintze, Kush XI; pp.222-224. Sappers were employed to build
causeways A causeway is a track, road or railway on the upper point of an embankment across "a low, or wet place, or piece of water". It can be constructed of earth, masonry, wood, or concrete. One of the earliest known wooden causeways is the Sweet Tra ...
during military campaigns. Kushite ancestors built
speos Rock-cut architecture is the creation of structures, buildings, and sculptures by excavating solid rock where it naturally occurs. Intensely laborious when using ancient tools and methods, rock-cut architecture was presumably combined with quarryi ...
during the Bronze Age between 3700 and 3250 BC.
Bloomeries A bloomery is a type of metallurgical furnace once used widely for smelting iron from its oxides. The bloomery was the earliest form of smelter capable of smelting iron. Bloomeries produce a porous mass of iron and slag called a ''bloom''. ...
and
blast furnace A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric ...
s were also created during the 7th centuries BC in Kush.
Ancient Greece Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cult ...
developed machines in both civilian and military domains. The
Antikythera mechanism The Antikythera mechanism ( ) is an Ancient Greek hand-powered orrery, described as the oldest example of an analogue computer used to predict astronomical positions and eclipses decades in advance. It could also be used to track the four-yea ...
, an early known mechanical
analog computer An analog computer or analogue computer is a type of computer that uses the continuous variation aspect of physical phenomena such as electrical, mechanical, or hydraulic quantities (''analog signals'') to model the problem being solved. In ...
, and the mechanical inventions of
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists i ...
, are examples of Greek mechanical engineering. Some of Archimedes' inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial Revolution, and are still widely used today in diverse fields such as robotics and
automotive engineering Automotive engineering, along with aerospace engineering and naval architecture, is a branch of vehicle engineering, incorporating elements of mechanical, electrical, electronic, software, and safety engineering as applied to the design, manufac ...
. Ancient Chinese, Greek, Roman and Hunnic armies employed military machines and inventions such as
artillery Artillery is a class of heavy military ranged weapons that launch munitions far beyond the range and power of infantry firearms. Early artillery development focused on the ability to breach defensive walls and fortifications during sieges, ...
which was developed by the Greeks around the 4th century BC, the trireme, the
ballista The ballista (Latin, from Greek βαλλίστρα ''ballistra'' and that from βάλλω ''ballō'', "throw"), plural ballistae, sometimes called bolt thrower, was an ancient missile weapon that launched either bolts or stones at a distant ta ...
and the
catapult A catapult is a ballistic device used to launch a projectile a great distance without the aid of gunpowder or other propellants – particularly various types of ancient and medieval siege engines. A catapult uses the sudden release of stored ...
. In the Middle Ages, the trebuchet was developed.


Middle Ages

The earliest practical
wind-power Wind power or wind energy is mostly the use of wind turbines to generate electricity. Wind power is a popular, sustainable, renewable energy source that has a much smaller impact on the environment than burning fossil fuels. Historically, w ...
ed machines, the
windmill A windmill is a structure that converts wind power into rotational energy using vanes called sails or blades, specifically to mill grain (gristmills), but the term is also extended to windpumps, wind turbines, and other applications, in some p ...
and
wind pump A windpump is a type of windmill which is used for pumping water. Windpumps were used to pump water since at least the 9th century in what is now Afghanistan, Iran and Pakistan. The use of wind pumps became widespread across the Muslim world an ...
, first appeared in the Muslim world during the Islamic Golden Age, in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD. The earliest practical
steam-power A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be tran ...
ed machine was a
steam jack A roasting jack is a machine which rotates meat roasting on a spit. It can also be called a spit jack, a spit engine or a turnspit, although this name can also refer to a human turning the spit, or a turnspit dog. Cooking meat on a spit dates b ...
driven by a
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbin ...
, described in 1551 by Taqi al-Din Muhammad ibn Ma'ruf in Ottoman Egypt. The
cotton gin A cotton gin—meaning "cotton engine"—is a machine that quickly and easily separates cotton fibers from their seeds, enabling much greater productivity than manual cotton separation.. Reprinted by McGraw-Hill, New York and London, 1926 (); ...
was invented in India by the 6th century AD, and the
spinning wheel A spinning wheel is a device for spinning thread or yarn from fibres. It was fundamental to the cotton textile industry prior to the Industrial Revolution. It laid the foundations for later machinery such as the spinning jenny and spinnin ...
was invented in the Islamic world by the early 11th century, both of which were fundamental to the growth of the
cotton industry Cotton is a soft, fluffy staple fiber that grows in a boll, or protective case, around the seeds of the cotton plants of the genus ''Gossypium'' in the mallow family Malvaceae. The fiber is almost pure cellulose, and can contain minor pe ...
. The spinning wheel was also a precursor to the spinning jenny, which was a key development during the early Industrial Revolution in the 18th century. The earliest programmable machines were developed in the Muslim world. A music sequencer, a programmable musical instrument, was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the
Banu Musa Banu or BANU may refer to: * Banu (name) * Banu (Arabic), Arabic word for "the sons of" or "children of" * Banu (makeup artist), an Indian makeup artist * Banu Chichek, a character in the ''Book of Dede Korkut'' * Bulgarian Agrarian National Union ...
brothers, described in their ''
Book of Ingenious Devices The ''Book of Ingenious Devices'' (Arabic: كتاب الحيل ''Kitab al-Hiyal'', Persian: كتاب ترفندها ''Ketab tarfandha'', literally: "The Book of Tricks") is a large illustrated work on mechanical devices, including automata, publ ...
'', in the 9th century. In 1206, Al-Jazari invented programmable
automata An automaton (; plural: automata or automatons) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions.Automaton – Definition and More ...
/ robots. He described four
automaton An automaton (; plural: automata or automatons) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions.Automaton – Definition and More ...
musicians, including drummers operated by a programmable drum machine, where they could be made to play different rhythms and different drum patterns.Professor Noel Sharkey
A 13th Century Programmable Robot (Archive)
University of Sheffield , mottoeng = To discover the causes of things , established = – University of SheffieldPredecessor institutions: – Sheffield Medical School – Firth College – Sheffield Technical School – University College of Sheffield , type = P ...
.
The
castle clock Clock towers are a specific type of structure which house a turret clock and have one or more clock faces on the upper exterior walls. Many clock towers are freestanding structures but they can also adjoin or be located on top of another buildin ...
, a hydropowered mechanical
astronomical clock An astronomical clock, horologium, or orloj is a clock with special mechanisms and dials to display astronomical information, such as the relative positions of the Sun, Moon, zodiacal constellations, and sometimes major planets. Definition ...
invented by Al-Jazari, was the first programmable
analog computer An analog computer or analogue computer is a type of computer that uses the continuous variation aspect of physical phenomena such as electrical, mechanical, or hydraulic quantities (''analog signals'') to model the problem being solved. In ...
.
Donald Routledge Hill Donald Routledge Hill (6 August 1922 – 30 May 1994)D. A. King, “In Memoriam: Donald Routledge Hill (1922-1994)”, ''Arabic Sciences and Philosophy,'' Volume 5 / Issue 02 / September 1995, pp 297-302 was a British engineer and historian of sc ...
, "Mechanical Engineering in the Medieval Near East", ''Scientific American'', May 1991, pp. 64–9 (
cf. The abbreviation ''cf.'' (short for the la, confer/conferatur, both meaning "compare") is used in writing to refer the reader to other material to make a comparison with the topic being discussed. Style guides recommend that ''cf.'' be used onl ...
Donald Routledge Hill Donald Routledge Hill (6 August 1922 – 30 May 1994)D. A. King, “In Memoriam: Donald Routledge Hill (1922-1994)”, ''Arabic Sciences and Philosophy,'' Volume 5 / Issue 02 / September 1995, pp 297-302 was a British engineer and historian of sc ...

Mechanical Engineering
)
Before the development of modern engineering, mathematics was used by artisans and craftsmen, such as
millwright A millwright is a craftsperson or skilled tradesperson who installs, dismantles, maintains, repairs, reassembles, and moves machinery in factories, power plants, and construction sites. The term ''millwright'' (also known as ''industrial mecha ...
s,
clockmaker A clockmaker is an artisan who makes and/or repairs clocks. Since almost all clocks are now factory-made, most modern clockmakers only repair clocks. Modern clockmakers may be employed by jewellers, antique shops, and places devoted strictly to ...
s, instrument makers and surveyors. Aside from these professions, universities were not believed to have had much practical significance to technology. A standard reference for the state of mechanical arts during the Renaissance is given in the mining engineering treatise '' De re metallica'' (1556), which also contains sections on geology, mining, and chemistry. ''De re metallica'' was the standard chemistry reference for the next 180 years.


Modern era

The science of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical m ...
, sometimes called Newtonian mechanics, formed the scientific basis of much of modern engineering. With the rise of engineering as a
profession A profession is a field of work that has been successfully '' professionalized''. It can be defined as a disciplined group of individuals, ''professionals'', who adhere to ethical standards and who hold themselves out as, and are accepted by ...
in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering, the fields then known as the
mechanic arts ''Artes mechanicae'' (mechanical arts) are a medieval concept of ordered practices or skills, often juxtaposed to the traditional seven liberal arts (''artes liberales''). Also called "servile" and "vulgar", from antiquity they had been deemed un ...
became incorporated into engineering. Canal building was an important engineering work during the early phases of the Industrial Revolution. John Smeaton was the first self-proclaimed civil engineer and is often regarded as the "father" of civil engineering. He was an English civil engineer responsible for the design of bridges, canals, harbors, and lighthouses. He was also a capable mechanical engineer and an eminent
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate caus ...
. Using a model water wheel, Smeaton conducted experiments for seven years, determining ways to increase efficiency. Smeaton introduced iron axles and gears to water wheels. Smeaton also made mechanical improvements to the
Newcomen steam engine The atmospheric engine was invented by Thomas Newcomen in 1712, and is often referred to as the Newcomen fire engine (see below) or simply as a Newcomen engine. The engine was operated by condensing steam drawn into the cylinder, thereby creati ...
. Smeaton designed the third
Eddystone Lighthouse The Eddystone Lighthouse is a lighthouse that is located on the dangerous Eddystone Rocks, south of Rame Head in Cornwall, England. The rocks are submerged below the surface of the sea and are composed of Precambrian gneiss. View at 1:50000 ...
(1755–59) where he pioneered the use of ' hydraulic lime' (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. He is important in the history, rediscovery of, and development of modern
cement A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel ( aggregate) together. Cement mi ...
, because he identified the compositional requirements needed to obtain "hydraulicity" in lime; work which led ultimately to the invention of Portland cement. Applied science lead to the development of the steam engine. The sequence of events began with the invention of the
barometer A barometer is a scientific instrument that is used to measure air pressure in a certain environment. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis ...
and the measurement of atmospheric pressure by Evangelista Torricelli in 1643, demonstration of the force of atmospheric pressure by
Otto von Guericke Otto von Guericke ( , , ; spelled Gericke until 1666; November 20, 1602 – May 11, 1686 ; November 30, 1602 – May 21, 1686 ) was a German scientist, inventor, and politician. His pioneering scientific work, the development of experimental me ...
using the
Magdeburg hemispheres The Magdeburg hemispheres are a pair of large copper hemispheres, with mating rims. They were used to demonstrate the power of atmospheric pressure. When the rims were sealed with grease and the air was pumped out, the sphere contained a vacuum a ...
in 1656, laboratory experiments by
Denis Papin Denis Papin FRS (; 22 August 1647 – 26 August 1713) was a French physicist, mathematician and inventor, best known for his pioneering invention of the steam digester, the forerunner of the pressure cooker and of the steam engine. Early li ...
, who built experimental model steam engines and demonstrated the use of a piston, which he published in 1707.
Edward Somerset, 2nd Marquess of Worcester Edward Somerset, 2nd Marquess of Worcester (9 March 1602 or 9 March 16033 April 1667), styled Lord Herbert of Raglan from 1628 to 1644, was an English nobleman involved in royalist politics, and an inventor. While Earl of Glamorgan, he was se ...
published a book of 100 inventions containing a method for raising waters similar to a
coffee percolator A coffee percolator is a type of pot used for the brewing of coffee by continually cycling the boiling or nearly boiling brew through the grounds using gravity until the required strength is reached. Coffee percolators once enjoyed great popu ...
.
Samuel Morland Sir Samuel Morland, 1st Baronet (1625 – 30 December 1695), or Moreland, was an English academic, diplomat, spy, inventor and mathematician of the 17th century, a polymath credited with early developments in relation to computing, hydraulics an ...
, a mathematician and inventor who worked on pumps, left notes at the Vauxhall Ordinance Office on a steam pump design that
Thomas Savery Thomas Savery (; c. 1650 – 15 May 1715) was an English inventor and engineer. He invented the first commercially used steam-powered device, a steam pump which is often referred to as the "Savery engine". Savery's steam pump was a revolutionar ...
read. In 1698 Savery built a steam pump called "The Miner's Friend." It employed both vacuum and pressure. Iron merchant Thomas Newcomen, who built the first commercial piston steam engine in 1712, was not known to have any scientific training. The application of steam-powered cast iron blowing cylinders for providing pressurized air for
blast furnace A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric ...
s lead to a large increase in iron production in the late 18th century. The higher furnace temperatures made possible with steam-powered blast allowed for the use of more lime in
blast furnace A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric ...
s, which enabled the transition from charcoal to coke. These innovations lowered the cost of iron, making horse railways and iron bridges practical. The puddling process, patented by
Henry Cort Henry Cort (c. 1740 – 23 May 1800) was an English ironware producer although formerly a Navy pay agent. During the Industrial Revolution in England, Cort began refining iron from pig iron to wrought iron (or bar iron) using innovative produc ...
in 1784 produced large scale quantities of wrought iron.
Hot blast Hot blast refers to the preheating of air blown into a blast furnace or other metallurgical process. As this considerably reduced the fuel consumed, hot blast was one of the most important technologies developed during the Industrial Revolution. ...
, patented by James Beaumont Neilson in 1828, greatly lowered the amount of fuel needed to smelt iron. With the development of the high pressure steam engine, the power to weight ratio of steam engines made practical steamboats and locomotives possible. New steel making processes, such as the
Bessemer process The Bessemer process was the first inexpensive industrial process for the mass production of steel from molten pig iron before the development of the open hearth furnace. The key principle is removal of impurities from the iron by oxidation wit ...
and the open hearth furnace, ushered in an area of heavy engineering in the late 19th century. One of the most famous engineers of the mid 19th century was
Isambard Kingdom Brunel Isambard Kingdom Brunel (; 9 April 1806 – 15 September 1859) was a British civil engineer who is considered "one of the most ingenious and prolific figures in engineering history," "one of the 19th-century engineering giants," and "one ...
, who built railroads, dockyards and steamships. The Industrial Revolution created a demand for machinery with metal parts, which led to the development of several
machine tools A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All ...
. Boring cast iron cylinders with precision was not possible until John Wilkinson invented his boring machine, which is considered the first machine tool. Other machine tools included the
screw cutting lathe A screw-cutting lathe is a machine (specifically, a lathe) capable of cutting very accurate screw threads via single-point screw-cutting, which is the process of guiding the linear motion of the tool bit in a precisely known ratio to the rotatin ...
, milling machine, turret lathe and the metal planer. Precision machining techniques were developed in the first half of the 19th century. These included the use of gigs to guide the machining tool over the work and fixtures to hold the work in the proper position. Machine tools and machining techniques capable of producing interchangeable parts lead to large scale factory production by the late 19th century. The United States census of 1850 listed the occupation of "engineer" for the first time with a count of 2,000. There were fewer than 50 engineering graduates in the U.S. before 1865. In 1870 there were a dozen U.S. mechanical engineering graduates, with that number increasing to 43 per year in 1875. In 1890, there were 6,000 engineers in civil, mining, mechanical and electrical. There was no chair of applied mechanism and applied mechanics at Cambridge until 1875, and no chair of engineering at Oxford until 1907. Germany established technical universities earlier. The foundations of electrical engineering in the 1800s included the experiments of
Alessandro Volta Alessandro Giuseppe Antonio Anastasio Volta (, ; 18 February 1745 – 5 March 1827) was an Italian physicist, chemist and lay Catholic who was a pioneer of electricity and power who is credited as the inventor of the electric battery and the ...
, Michael Faraday, Georg Ohm and others and the invention of the electric telegraph in 1816 and the electric motor in 1872. The theoretical work of James Maxwell (see:
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
) and
Heinrich Hertz Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism. The unit o ...
in the late 19th century gave rise to the field of electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty.
Chemical engineering Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials int ...
developed in the late nineteenth century. Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants. The role of the chemical engineer was the design of these chemical plants and processes. Aeronautical engineering deals with
aircraft design process The aircraft design process is a loosely defined method used to balance many competing and demanding requirements to produce an aircraft that is strong, lightweight, economical and can carry an adequate payload while being sufficiently reliable to ...
design while
aerospace engineering Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is si ...
is a more modern term that expands the reach of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the start of the 20th century although the work of
Sir George Cayley Sir George Cayley, 6th Baronet (27 December 1773 – 15 December 1857) was an English engineer, inventor, and aviator. He is one of the most important people in the history of aeronautics. Many consider him to be the first true scientific aer ...
has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering. The first PhD in engineering (technically, ''applied science and engineering'') awarded in the United States went to
Josiah Willard Gibbs Josiah Willard Gibbs (; February 11, 1839 – April 28, 1903) was an American scientist who made significant theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in t ...
at Yale University in 1863; it was also the second PhD awarded in science in the U.S. Only a decade after the successful flights by the Wright brothers, there was extensive development of aeronautical engineering through development of military aircraft that were used in World War I. Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.


Main branches of engineering

Engineering is a broad discipline that is often broken down into several sub-disciplines. Although an engineer will usually be trained in a specific discipline, he or she may become multi-disciplined through experience. Engineering is often characterized as having four main branches:The Engineering Profession
by Sir James Hamilton, UK Engineering Council Quote: "The Civilingenior degree encompasses the main branches of engineering civil, mechanical, electrical, chemical." (From the Internet Archive)
chemical engineering, civil engineering, electrical engineering, and mechanical engineering.


Chemical engineering

Chemical engineering is the application of physics, chemistry, biology, and engineering principles in order to carry out chemical processes on a commercial scale, such as the manufacture of
commodity chemicals Commodity chemicals (or bulk commodities or bulk chemicals) are a group of chemicals that are made on a very large scale to satisfy global markets. The average prices of commodity chemicals are regularly published in the chemical trade magazines an ...
, specialty chemicals,
petroleum refining An oil refinery or petroleum refinery is an industrial process plant where petroleum (crude oil) is transformed and refined into useful products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefie ...
,
microfabrication Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as " semiconductor manufacturing ...
, fermentation, and biomolecule production.


Civil engineering

Civil engineering is the design and construction of public and private works, such as infrastructure (airports, roads, railways, water supply, and treatment etc.), bridges, tunnels, dams, and buildings. Civil engineering is traditionally broken into a number of sub-disciplines, including structural engineering,
environmental engineering Environmental engineering is a professional engineering discipline that encompasses broad scientific topics like chemistry, biology, ecology, geology, hydraulics, hydrology, microbiology, and mathematics to create solutions that will protect and ...
, and surveying. It is traditionally considered to be separate from
military engineering Military engineering is loosely defined as the art, science, and practice of designing and building military works and maintaining lines of military transport and military communications. Military engineers are also responsible for logistics b ...
.


Electrical engineering

Electrical engineering is the design, study, and manufacture of various electrical and electronic systems, such as
broadcast engineering Broadcast engineering is the field of electrical engineering, and now to some extent computer engineering and information technology, which deals with radio and television broadcasting. Audio engineering and RF engineering are also essential pa ...
, electrical circuits, generators,
motors An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power ...
, electromagnetic/ electromechanical devices,
electronic devices The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
,
electronic circuits An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical ...
,
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means t ...
s,
optoelectronic device Optoelectronics (or optronics) is the study and application of electronic devices and systems that find, detect and control light, usually considered a sub-field of photonics. In this context, ''light'' often includes invisible forms of radiati ...
s, computer systems, telecommunications,
instrumentation Instrumentation a collective term for measuring instruments that are used for indicating, measuring and recording physical quantities. The term has its origins in the art and science of scientific instrument-making. Instrumentation can refer to ...
, control systems, and electronics.


Mechanical engineering

Mechanical engineering is the design and manufacture of physical or mechanical systems, such as power and energy systems,
aerospace Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications. Aerospace engineering consists of aeronautics and astr ...
/
aircraft An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. ...
products, weapon systems, transportation products,
engines An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power gene ...
,
compressors A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor. Compressors are similar to pumps: both increase the pressure on a fluid and both can transp ...
, powertrains,
kinematic chain In mechanical engineering, a kinematic chain is an assembly of rigid bodies connected by joints to provide constrained (or desired) motion that is the mathematical model for a mechanical system. Reuleaux, F., 187''The Kinematics of Machinery, ...
s, vacuum technology,
vibration isolation Vibration isolation is the process of isolating an object, such as a piece of equipment, from the source of vibrations. Vibration is undesirable in many domains, primarily engineered systems and habitable spaces, and methods have been developed to p ...
equipment, manufacturing, robotics, turbines, audio equipments, and mechatronics.


Bioengineering

Bioengineering is the engineering of biological systems for a useful purpose. Examples of bioengineering research include bacteria engineered to produce chemicals, new medical imaging technology, portable and rapid disease diagnostic devices, prosthetics, biopharmaceuticals, and tissue-engineered organs.


Interdisciplinary engineering

Interdisciplinary engineering draws from more than one of the principle branches of the practice. Historically,
naval engineering Naval architecture, or naval engineering, is an engineering discipline incorporating elements of mechanical, electrical, electronic, software and safety engineering as applied to the engineering design process, shipbuilding, maintenance, an ...
and
mining engineering Mining in the engineering discipline is the extraction of minerals from underneath, open pit, above or on the ground. Mining engineering is associated with many other disciplines, such as mineral processing, exploration, excavation, geology, a ...
were major branches. Other engineering fields are manufacturing engineering,
acoustical engineering Acoustical engineering (also known as acoustic engineering) is the branch of engineering dealing with sound and vibration. It includes the application of acoustics, the science of sound and vibration, in technology. Acoustical engineers are typical ...
,
corrosion engineering Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to mana ...
, instrumentation and control,
aerospace Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications. Aerospace engineering consists of aeronautics and astr ...
, automotive, computer,
electronic Electronic may refer to: *Electronics, the science of how to control electric energy in semiconductor * ''Electronics'' (magazine), a defunct American trade journal *Electronic storage, the storage of data using an electronic device *Electronic co ...
,
information engineering Information engineering is the engineering discipline that deals with the generation, distribution, analysis, and use of information, data, and knowledge in systems. The field first became identifiable in the early 21st century. The component ...
, petroleum,
environmental A biophysical environment is a biotic and abiotic surrounding of an organism or population, and consequently includes the factors that have an influence in their survival, development, and evolution. A biophysical environment can vary in scal ...
,
systems A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and express ...
,
audio Audio most commonly refers to sound, as it is transmitted in signal form. It may also refer to: Sound *Audio signal, an electrical representation of sound *Audio frequency, a frequency in the audio spectrum * Digital audio, representation of sou ...
, software,
architectural Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and constructing buildings o ...
,
agricultural Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people ...
,
biosystems ''BioSystems'' is a monthly peer-reviewed scientific journal covering experimental, computational, and theoretical research that links biology, evolution, and the information processing sciences. It was established in 1967 as ''Currents in Modern B ...
,
biomedical Biomedicine (also referred to as Western medicine, mainstream medicine or conventional medicine)
, geological, textile, industrial, materials, and
nuclear engineering Nuclear engineering is the branch of engineering concerned with the application of breaking down atomic nuclei ( fission) or of combining atomic nuclei ( fusion), or with the application of other sub-atomic processes based on the principles of ...
. These and other branches of engineering are represented in the 36 licensed member institutions of the UK Engineering Council. New specialties sometimes combine with the traditional fields and form new branches – for example, Earth systems engineering and management involves a wide range of subject areas including
engineering studies Engineering studies is an interdisciplinary branch of social sciences and humanities devoted to the study of engineers and their activities, often considered a part of science and technology studies (STS), and intersecting with and drawing from ...
,
environmental science Environmental science is an interdisciplinary academic field that integrates physics, biology, and geography (including ecology, chemistry, plant science, zoology, mineralogy, oceanography, limnology, soil science, geology and physical geograp ...
, engineering ethics and
philosophy of engineering The philosophy of engineering is an emerging discipline that considers what engineering is, what engineers do, and how their work affects society, and thus includes aspects of ethics and aesthetics, as well as the ontology, epistemology, etc. that m ...
.


Other branches of engineering


Aerospace engineering

Aerospace engineering covers the design, development, manufacture and operational behaviour of
aircraft An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. ...
, satellites and rockets.


Marine engineering

Marine engineering covers the design,development,manufacture and operational behaviour of watercraft and stationary structures like oil platforms and ports.


Computer engineering

Computer engineering (CE) is a branch of engineering that integrates several fields of computer science and electronic engineering required to develop
computer hardware Computer hardware includes the physical parts of a computer, such as the case, central processing unit (CPU), random access memory (RAM), monitor, mouse, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. ...
and software. Computer engineers usually have training in electronic engineering (or electrical engineering),
software design Software design is the process by which an agent creates a specification of a software artifact intended to accomplish goals, using a set of primitive components and subject to constraints. Software design may refer to either "all the activity ...
, and hardware-software integration instead of only software engineering or electronic engineering.


Geological engineering

Geological engineering is associated with anything constructed on or within the Earth. This discipline applies geological sciences and engineering principles to direct or support the work of other disciplines such as civil engineering,
environmental engineering Environmental engineering is a professional engineering discipline that encompasses broad scientific topics like chemistry, biology, ecology, geology, hydraulics, hydrology, microbiology, and mathematics to create solutions that will protect and ...
, and
mining engineering Mining in the engineering discipline is the extraction of minerals from underneath, open pit, above or on the ground. Mining engineering is associated with many other disciplines, such as mineral processing, exploration, excavation, geology, a ...
. Geological engineers are involved with impact studies for facilities and operations that affect surface and subsurface environments, such as rock excavations (e.g.
tunnels A tunnel is an underground passageway, dug through surrounding soil, earth or rock, and enclosed except for the entrance and exit, commonly at each end. A pipeline is not a tunnel, though some recent tunnels have used immersed tube constr ...
),
building foundation In engineering, a foundation is the element of a structure which connects it to the ground, transferring loads from the structure to the ground. Foundations are generally considered either shallow or deep. Foundation engineering is the appl ...
consolidation, slope and fill stabilization, landslide risk assessment, groundwater monitoring,
groundwater remediation Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subs ...
, mining excavations, and natural resource exploration.


Practice

One who practices engineering is called an
engineer Engineers, as practitioners of engineering, are professionals who invent, design, analyze, build and test machines, complex systems, structures, gadgets and materials to fulfill functional objectives and requirements while considering the lim ...
, and those licensed to do so may have more formal designations such as Professional Engineer,
Chartered Engineer Regulation and licensure in engineering is established by various jurisdictions of the world to encourage life, public welfare, safety, well-being, then environment and other interests of the general public and to define the licensure process thro ...
,
Incorporated Engineer An engineering technologist is a professional trained in certain aspects of development and implementation of a respective area of technology. Engineering technology education is even more applied and less theoretical than engineering educatio ...
,
Ingenieur An engineer's degree is an advanced academic degree in engineering which is conferred in Europe, some countries of Latin America, North Africa and a few institutions in the United States. The degree may require a thesis but always requires a non- ...
,
European Engineer European Engineer (EUR ING) is an international professional qualification and title for highly qualified engineers used in over 32 European countries. Contemporary EUR ING engineers are degree-qualified and have gained the highest level of profess ...
, or Designated Engineering Representative.


Methodology

In the engineering design process, engineers apply mathematics and sciences such as physics to find novel solutions to problems or to improve existing solutions. Engineers need proficient knowledge of relevant sciences for their design projects. As a result, many engineers continue to learn new material throughout their careers. If multiple solutions exist, engineers weigh each design choice based on their merit and choose the solution that best matches the requirements. The task of the engineer is to identify, understand, and interpret the constraints on a design in order to yield a successful result. It is generally insufficient to build a technically successful product, rather, it must also meet further requirements. Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety, marketability, productivity, and serviceability. By understanding the constraints, engineers derive specifications for the limits within which a viable object or system may be produced and operated.


Problem solving

Engineers use their knowledge of science, mathematics, logic, economics, and appropriate experience or tacit knowledge to find suitable solutions to a particular problem. Creating an appropriate mathematical model of a problem often allows them to analyze it (sometimes definitively), and to test potential solutions. More than one solution to a design problem usually exists so the different
design choice In engineering, a design choice is a possible solution to a problem. Given a design task and a governing set of criteria (''design specifications''), several conceptual designs may be drafted. Each of these preliminary concepts is a potential de ...
s have to be evaluated on their merits before the one judged most suitable is chosen.
Genrich Altshuller Genrikh Saulovich Altshuller (Ге́нрих Сау́лович Альтшу́ллер, ) (born Tashkent, Uzbek SSR, USSR, 15 October 1926; died Petrozavodsk, Russia, 24 September 1998), was a Soviet engineer, inventor, and writer. He is most ...
, after gathering statistics on a large number of patents, suggested that
compromise To compromise is to make a deal between different parties where each party gives up part of their demand. In arguments, compromise is a concept of finding agreement through communication, through a mutual acceptance of terms—often involving var ...
s are at the heart of "
low-level High-level and low-level, as technical terms, are used to classify, describe and point to specific goals of a systematic operation; and are applied in a wide range of contexts, such as, for instance, in domains as widely varied as computer scienc ...
" engineering designs, while at a higher level the best design is one which eliminates the core contradiction causing the problem. Engineers typically attempt to predict how well their designs will perform to their specifications prior to full-scale production. They use, among other things: prototypes, scale models, simulations, destructive tests, nondestructive tests, and stress tests. Testing ensures that products will perform as expected but only in so far as the testing has been representative of use in service. For products, such as aircraft, that are used differently by different users failures and unexpected shortcomings (and necessary design changes) can be expected throughout the operational life of the product. Engineers take on the responsibility of producing designs that will perform as well as expected and, except those employed in specific areas of the
arms industry The arms industry, also known as the arms trade, is a global industry which manufactures and sells weapons and military technology. It consists of a commercial industry involved in the research and development, engineering, production, and servi ...
, will not harm people. Engineers typically include a
factor of safety In engineering, a factor of safety (FoS), also known as (and used interchangeably with) safety factor (SF), expresses how much stronger a system is than it needs to be for an intended load. Safety factors are often calculated using detailed analy ...
in their designs to reduce the risk of unexpected failure. The study of failed products is known as forensic engineering. It attempts to identify the cause of failure to allow a redesign of the product and so prevent a re-occurrence. Careful analysis is needed to establish the cause of failure of a product. The consequences of a failure may vary in severity from the minor cost of a machine breakdown to large loss of life in the case of accidents involving aircraft and large stationary structures like buildings and dams.


Computer use

As with all modern scientific and technological endeavors, computers and software play an increasingly important role. As well as the typical business
application software Application may refer to: Mathematics and computing * Application software, computer software designed to help the user to perform specific tasks ** Application layer, an abstraction layer that specifies protocols and interface methods used in a ...
there are a number of computer aided applications (
computer-aided technologies Computer-aided technologies (CAx) is the use of computer technology to aid in the design, analysis, and manufacture of products. Advanced CAx tools merge many different aspects of the product lifecycle management (PLM), including design, finite ...
) specifically for engineering. Computers can be used to generate models of fundamental physical processes, which can be solved using numerical methods. One of the most widely used
design tool Design tools are objects, media, or computer programs, which can be used to design. They may influence the process of production, expression and perception of design ideas and therefore need to be applied skillfully. Objects New ideas can come ...
s in the profession is
computer-aided design Computer-aided design (CAD) is the use of computers (or ) to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve c ...
(CAD) software. It enables engineers to create 3D models, 2D drawings, and schematics of their designs. CAD together with
digital mockup Digital MockUp or DMU is a concept that allows the description of a product, usually in 3D, for its entire life cycle. Digital Mockup is enriched by all the activities that contribute to describing the product. The product design engineers, the ma ...
(DMU) and CAE software such as finite element method analysis or
analytic element method The analytic element method (AEM) is a numerical method used for the solution of partial differential equations. It was initially developed by O.D.L. Strack at the University of Minnesota. It is similar in nature to the boundary element method (BEM ...
allows engineers to create models of designs that can be analyzed without having to make expensive and time-consuming physical prototypes. These allow products and components to be checked for flaws; assess fit and assembly; study ergonomics; and to analyze static and dynamic characteristics of systems such as stresses, temperatures, electromagnetic emissions, electrical currents and voltages, digital logic levels, fluid flows, and kinematics. Access and distribution of all this information is generally organized with the use of
product data management Product data management (PDM) should not be confused with product information management (PIM). PDM is the name of a business function within product lifecycle management (PLM) that is denotes the management and publication of product data. In sof ...
software. There are also many tools to support specific engineering tasks such as
computer-aided manufacturing Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining is the use of software to control machine tools in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most ...
(CAM) software to generate
CNC Numerical control (also computer numerical control, and commonly called CNC) is the automated control of machining tools (such as drills, lathes, mills, grinders, routers and 3D printers) by means of a computer. A CNC machine processes a p ...
machining instructions; manufacturing process management software for production engineering;
EDA EDA or Eda may refer to: Computing * Electronic design automation * Enterprise Desktop Alliance, a computer technology consortium * Enterprise digital assistant * Estimation of distribution algorithm * Event-driven architecture * Exploratory da ...
for printed circuit board (PCB) and circuit schematics for electronic engineers; MRO applications for maintenance management; and Architecture, engineering and construction (AEC) software for civil engineering. In recent years the use of computer software to aid the development of goods has collectively come to be known as product lifecycle management (PLM).


Social context

The engineering profession engages in a wide range of activities, from large collaboration at the societal level, and also smaller individual projects. Almost all engineering projects are obligated to some sort of financing agency: a company, a set of investors, or a government. The few types of engineering that are minimally constrained by such issues are '' pro bono'' engineering and open-design engineering. By its very nature engineering has interconnections with society, culture and human behavior. Every product or construction used by modern society is influenced by engineering. The results of engineering activity influence changes to the environment, society and economies, and its application brings with it a responsibility and public safety. Engineering projects can be subject to controversy. Examples from different engineering disciplines include the development of nuclear weapons, the Three Gorges Dam, the design and use of sport utility vehicles and the extraction of
oil An oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) & lipophilic (mixes with other oils). Oils are usually flammable and surface active. Most oils are unsaturated ...
. In response, some western engineering companies have enacted serious corporate and social responsibility policies. Engineering is a key driver of innovation and human development. Sub-Saharan Africa, in particular, has a very small engineering capacity which results in many African nations being unable to develop crucial infrastructure without outside aid. The attainment of many of the Millennium Development Goals requires the achievement of sufficient engineering capacity to develop infrastructure and sustainable technological development. All overseas development and relief NGOs make considerable use of engineers to apply solutions in disaster and development scenarios. A number of charitable organizations aim to use engineering directly for the good of mankind: *
Engineers Without Borders The term Engineers Without Borders (EWB; french: Ingénieurs sans frontières, ISF) is used by a number of non-governmental organizations in various countries to describe their activity based on engineering and oriented to international development ...
*
Engineers Against Poverty Engineers Against Poverty (EAP) is a specialist British NGO working in the field of engineering and international development. It was established in 1998 by the Royal Academy of Engineering The Royal Academy of Engineering (RAEng) is the United ...
* Registered Engineers for Disaster Relief * Engineers for a Sustainable World *
Engineering for Change Engineering for Change (E4C) is an online platform and international community of engineers, scientists, non-governmental organizations, local community advocates and other innovators working to solve global development problems. The organization ...
* Engineering Ministries InternationalHome page for EMI
Engineering companies in many established economies are facing significant challenges with regard to the number of professional engineers being trained, compared with the number retiring. This problem is very prominent in the UK where engineering has a poor image and low status. There are many negative economic and political issues that this can cause, as well as ethical issues. It is widely agreed that the engineering profession faces an "image crisis", rather than it being fundamentally an unattractive career. Much work is needed to avoid huge problems in the UK and other western economies. Still, the UK holds most engineering companies compared to other European countries, together with the United States.


Code of ethics

Many engineering societies have established codes of practice and codes of ethics to guide members and inform the public at large. The
National Society of Professional Engineers The National Society of Professional Engineers (abbreviate as NSPE) is a professional association representing licensed professional engineers in the United States. NSPE is the recognized voice and advocate of licensed Professional Engineers rep ...
code of ethics states: In Canada, many engineers wear the Iron Ring as a symbol and reminder of the obligations and ethics associated with their profession.


Relationships with other disciplines


Science

There exists an overlap between the sciences and engineering practice; in engineering, one applies science. Both areas of endeavor rely on accurate observation of materials and phenomena. Both use mathematics and classification criteria to analyze and communicate observations. Scientists may also have to complete engineering tasks, such as designing experimental apparatus or building prototypes. Conversely, in the process of developing technology, engineers sometimes find themselves exploring new phenomena, thus becoming, for the moment, scientists or more precisely "engineering scientists". In the book ''
What Engineers Know and How They Know It ''What Engineers Know and How they Know It: Analytical Studies from Aeronautical History'' (The Johns Hopkins University Press, 1990) () is a historical reflection on engineering practice in US aeronautics from 1908 to 1953 written by Walter Vinc ...
'',
Walter Vincenti Walter Guido Vincenti (April 20, 1917 – October 11, 2019) was an American engineer who worked in the field of aeronautics, designing planes that could fly at hypersonic speed. He was elected as a member of several scientific societies, incl ...
asserts that engineering research has a character different from that of scientific research. First, it often deals with areas in which the basic physics or chemistry are well understood, but the problems themselves are too complex to solve in an exact manner. There is a "real and important" difference between engineering and physics as similar to any science field has to do with technology. Physics is an exploratory science that seeks knowledge of principles while engineering uses knowledge for practical applications of principles. The former equates an understanding into a mathematical principle while the latter measures variables involved and creates technology. For technology, physics is an auxiliary and in a way technology is considered as applied physics. Though physics and engineering are interrelated, it does not mean that a physicist is trained to do an engineer's job. A physicist would typically require additional and relevant training. Physicists and engineers engage in different lines of work. But PhD physicists who specialize in sectors of engineering physics and
applied physics Applied physics is the application of physics to solve scientific or engineering problems. It is usually considered to be a bridge or a connection between physics and engineering. "Applied" is distinguished from "pure" by a subtle combination ...
are titled as Technology officer, R&D Engineers and System Engineers. An example of this is the use of numerical approximations to the
Navier–Stokes equations In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician Geo ...
to describe aerodynamic flow over an aircraft, or the use of the
Finite element method The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat ...
to calculate the stresses in complex components. Second, engineering research employs many semi-
empirical methods Empirical research is research using empirical evidence. It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence (the record of ...
that are foreign to pure scientific research, one example being the method of parameter variation. As stated by Fung ''et al.'' in the revision to the classic engineering text ''Foundations of Solid Mechanics'':
Engineering is quite different from science. Scientists try to understand nature. Engineers try to make things that do not exist in nature. Engineers stress innovation and invention. To embody an invention the engineer must put his idea in concrete terms, and design something that people can use. That something can be a complex system, device, a gadget, a material, a method, a computing program, an innovative experiment, a new solution to a problem, or an improvement on what already exists. Since a design has to be realistic and functional, it must have its geometry, dimensions, and characteristics data defined. In the past engineers working on new designs found that they did not have all the required information to make design decisions. Most often, they were limited by insufficient scientific knowledge. Thus they studied mathematics, physics, chemistry,
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
and mechanics. Often they had to add to the sciences relevant to their profession. Thus engineering sciences were born.
Although engineering solutions make use of scientific principles, engineers must also take into account safety, efficiency, economy, reliability, and constructability or ease of fabrication as well as the environment, ethical and legal considerations such as patent infringement or liability in the case of failure of the solution.


Medicine and biology

The study of the human body, albeit from different directions and for different purposes, is an important common link between medicine and some engineering disciplines. Medicine aims to sustain, repair, enhance and even replace functions of the
human body The human body is the structure of a human being. It is composed of many different types of cells that together create tissues and subsequently organ systems. They ensure homeostasis and the viability of the human body. It comprises a head ...
, if necessary, through the use of technology. Modern medicine can replace several of the body's functions through the use of artificial organs and can significantly alter the function of the human body through artificial devices such as, for example,
brain implant Brain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's brain – usually placed on the surface of the brain, or attached to the brain's cortex. A common purpose of modern bra ...
s and
pacemakers An artificial cardiac pacemaker (or artificial pacemaker, so as not to be confused with the natural cardiac pacemaker) or pacemaker is a medical device that generates electrical impulses delivered by electrodes to the chambers of the heart eit ...
. The fields of
bionics Bionics or biologically inspired engineering is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology. The word ''bionic'', coined by Jack E. Steele in August ...
and medical bionics are dedicated to the study of synthetic implants pertaining to natural systems. Conversely, some engineering disciplines view the human body as a biological machine worth studying and are dedicated to emulating many of its functions by replacing
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
with technology. This has led to fields such as
artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech re ...
,
neural networks A neural network is a network or circuit of biological neurons, or, in a modern sense, an artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is either a biological neural network, made up of biological ...
,
fuzzy logic Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and complete ...
, and robotics. There are also substantial interdisciplinary interactions between engineering and medicine.Institute of Medicine and Engineering: Mission statement The mission of the Institute for Medicine and Engineering (IME) is to stimulate fundamental research at the interface between biomedicine and engineering/physical/computational sciences leading to innovative applications in biomedical research and clinical practice.
Both fields provide solutions to real world problems. This often requires moving forward before phenomena are completely understood in a more rigorous scientific sense and therefore experimentation and empirical knowledge is an integral part of both. Medicine, in part, studies the function of the human body. The human body, as a biological machine, has many functions that can be modeled using engineering methods.Royal Academy of Engineering and Academy of Medical Sciences: Systems Biology: a vision for engineering and medicine in pdf: quote1: Systems Biology is an emerging methodology that has yet to be defined quote2: It applies the concepts of systems engineering to the study of complex biological systems through iteration between computational or mathematical modelling and experimentation.
The heart for example functions much like a pump, the skeleton is like a linked structure with levers,
the brain produces electrical signals etc. These similarities as well as the increasing importance and application of engineering principles in medicine, led to the development of the field of
biomedical engineering Biomedical engineering (BME) or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare purposes (e.g., diagnostic or therapeutic). BME is also traditionally logical sciences ...
that uses concepts developed in both disciplines. Newly emerging branches of science, such as systems biology, are adapting analytical tools traditionally used for engineering, such as systems modeling and computational analysis, to the description of biological systems.


Art

There are connections between engineering and art, for example,
architecture Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and constructing buildings ...
, landscape architecture and industrial design (even to the extent that these disciplines may sometimes be included in a university's
Faculty Faculty may refer to: * Faculty (academic staff), the academic staff of a university (North American usage) * Faculty (division) A faculty is a division within a university or college comprising one subject area or a group of related subject ...
of Engineering).MIT World:The Art of Engineering: Inventor James Dyson on the Art of Engineering: quote: A member of the British Design Council, James Dyson has been designing products since graduating from the Royal College of Art in 1970.
The
Art Institute of Chicago The Art Institute of Chicago in Chicago's Grant Park, founded in 1879, is one of the oldest and largest art museums in the world. Recognized for its curatorial efforts and popularity among visitors, the museum hosts approximately 1.5 mil ...
, for instance, held an exhibition about the art of NASA's aerospace design.
Robert Maillart Robert Maillart (16 February 1872 – 5 April 1940) was a Swiss civil engineer who revolutionized the use of structural reinforced concrete with such designs as the three-hinged arch and the deck-stiffened arch for bridges, and the beamless f ...
's bridge design is perceived by some to have been deliberately artistic. At the University of South Florida, an engineering professor, through a grant with the National Science Foundation, has developed a course that connects art and engineering.quote:..the tools of artists and the perspective of engineers..
Among famous historical figures, Leonardo da Vinci is a well-known Renaissance artist and engineer, and a prime example of the nexus between art and engineering.Bjerklie, David. "The Art of Renaissance Engineering." ''MIT's Technology Review'' Jan./Feb.1998: 54–59. Article explores the concept of the "artist-engineer", an individual who used his artistic talent in engineering. Quote from article: Da Vinci reached the pinnacle of "artist-engineer"-dom, Quote2: "It was Leonardo da Vinci who initiated the most ambitious expansion in the role of artist-engineer, progressing from astute observer to inventor to theoretician." (Bjerklie 58)Drew U: user website: cites Bjerklie paper


Business

Business Engineering A business process, business method or business function is a collection of related, structured activities or tasks by people or equipment in which a specific sequence produces a service or product (serves a particular business goal) for a parti ...
deals with the relationship between professional engineering, IT systems, business administration and
change management Change management (sometimes abbreviated as CM) is a collective term for all approaches to prepare, support, and help individuals, teams, and organizations in making organizational change. It includes methods that redirect or redefine the use of ...
.
Engineering management Engineering management is the application of the practice of management to the practice of engineering. Engineering management is a career that brings together the technological problem-solving ability of engineering and the organizational, admini ...
or "Management engineering" is a specialized field of management concerned with engineering practice or the engineering industry sector. The demand for management-focused engineers (or from the opposite perspective, managers with an understanding of engineering), has resulted in the development of specialized engineering management degrees that develop the knowledge and skills needed for these roles. During an engineering management course, students will develop
industrial engineering Industrial engineering is an engineering profession that is concerned with the optimization of complex processes, systems, or organizations by developing, improving and implementing integrated systems of people, money, knowledge, information an ...
skills, knowledge, and expertise, alongside knowledge of business administration, management techniques, and strategic thinking. Engineers specializing in change management must have in-depth knowledge of the application of
industrial and organizational psychology Industrial and organizational psychology (I-O psychology), an applied discipline within psychology, is the science of human behavior in the workplace. Depending on the country or region of the world, I-O psychology is also known as occupational ...
principles and methods. Professional engineers often train as
certified management consultant "Certified management consultant" (CMC) is an international professional certification established in 1967 for management consulting professionals, awarded by institutes in 50 countries (as of February 2014). The CMC enjoys global reciprocity; cons ...
s in the very specialized field of management consulting applied to engineering practice or the engineering sector. This work often deals with large scale complex
business transformation In management it has been said that business transformation involves making fundamental changes in how business is conducted in order to help cope with shifts in market environment. However this is a relatively narrow definition that overlooks ot ...
or
Business process management Business process management (BPM) is the discipline in which people use various methods to discover, model, analyze, measure, improve, optimize, and automate business processes. Any combination of methods used to manage a company's business pr ...
initiatives in aerospace and defence, automotive, oil and gas, machinery, pharmaceutical, food and beverage, electrical & electronics, power distribution & generation, utilities and transportation systems. This combination of technical engineering practice, management consulting practice, industry sector knowledge, and change management expertise enables professional engineers who are also qualified as management consultants to lead major business transformation initiatives. These initiatives are typically sponsored by C-level executives.


Other fields

In political science, the term ''engineering'' has been borrowed for the study of the subjects of social engineering and
political engineering In political science, political engineering is the designing of political institutions in a society and often involves the use of paper decrees, in the form of laws, referendums, ordinances, or otherwise, to try to achieve some desired effect. The ...
, which deal with forming political and social structures using engineering methodology coupled with political science principles.
Marketing engineering Marketing engineering is currently defined as "a systematic approach to harness data and knowledge to drive effective marketing decision making and implementation through a technology-enabled and model-supported decision process". History The term ...
and
Financial engineering Financial engineering is a multidisciplinary field involving financial theory, methods of engineering, tools of mathematics and the practice of programming. It has also been defined as the application of technical methods, especially from mathe ...
have similarly borrowed the term.


See also

;Lists * List of aerospace engineering topics *
List of basic chemical engineering topics The following outline is provided as an overview of and topical guide to chemical engineering: Chemical engineering – deals with the application of physical science (e.g., chemistry and physics), and life sciences (e.g., biology, microbi ...
*
List of electrical engineering topics The following outline is provided as an overview of and topical guide to electrical engineering. Electrical engineering – field of engineering that generally deals with the study and application of electricity, electronics and electromag ...
*
List of engineering societies An engineering society is a professional organization for engineers of various disciplines. Some are umbrella type organizations which accept many different disciplines, while others are discipline-specific. Many award professional designations, s ...
*
List of engineering topics The following outline is provided as an overview of and topical guide to engineering: Engineering is the scientific discipline and profession that applies scientific theories, mathematical methods, and empirical evidence to design, create, and ...
*
List of engineers Types of engineer include: * Chartered Engineer * European Engineer * Incorporated Engineer * Professional Engineer * Royal Engineer Lists of individual engineers by discipline include: * List of aerospace engineers * List of canal engineers * ...
*
List of genetic engineering topics Genetics (from Ancient Greek ', “genite” and that from ', “origin”), a discipline of biology, is the science of heredity and variation in living organisms.Griffiths et al. (2000)Chapter 1 (Genetics and the Organism): Introduction/ref> ...
*
List of mechanical engineering topics This is an alphabetical list of articles pertaining specifically to mechanical engineering. For a broad overview of engineering, please see List of engineering topics. For biographies please see List of engineers. A Acceleration – Accuracy an ...
*
List of nanoengineering topics The following outline is provided as an overview of and topical guide to nanotechnology: Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers. Branches of nanotechnology * ...
*
List of software engineering topics The following outline is provided as an overview of and topical guide to software engineering: Software engineering – application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software ...
;Glossaries *
Glossary of areas of mathematics Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of method ...
*
Glossary of biology This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
* Glossary of chemistry *
Glossary of engineering This glossary is split across multiple pages due to technical limitations. By Alphabetical Order * Glossary of engineering: A-L * Glossary of engineering: M–Z By Category * Glossary of civil engineering * Glossary of electrical and elect ...
*
Glossary of physics This glossary of physics is a list of definitions of terms and concepts relevant to physics, its sub-disciplines, and related fields, including mechanics, materials science, nuclear physics, particle physics, and thermodynamics. For more inclusi ...
;Related subjects * Controversies over the term Engineer * Design * Earthquake engineering *
Ecotechnology Ecotechnology is an applied science that seeks to fulfill human needs while causing minimal ecological disruption, by harnessing and manipulating natural forces to leverage their beneficial effects. Ecotechnology integrates two fields of study: ...
*
Engineer Engineers, as practitioners of engineering, are professionals who invent, design, analyze, build and test machines, complex systems, structures, gadgets and materials to fulfill functional objectives and requirements while considering the lim ...
* Engineering economics * Engineering education *
Engineering education research Engineering education research is the field of inquiry that creates knowledge which aims to define, inform, and improve the education of engineers. It achieves this through research on topics such as: epistemology, policy, assessment, pedagogy, div ...
*
Engineers Without Borders The term Engineers Without Borders (EWB; french: Ingénieurs sans frontières, ISF) is used by a number of non-governmental organizations in various countries to describe their activity based on engineering and oriented to international development ...
* Environmental engineering science * Environmental technology * Forensic engineering * Global Engineering Education *
Green engineering Green engineering approaches the design of products and processes by applying financially and technologically feasible principles to achieve one or more of the following goals: (1) decrease in the amount of pollution that is generated by a construc ...
*
Green building Green building (also known as green construction or sustainable building) refers to both a structure and the application of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from plann ...
* Industrial design * Infrastructure * Mathematics * Open-source hardware *
Planned obsolescence In economics and industrial design, planned obsolescence (also called built-in obsolescence or premature obsolescence) is a policy of planning or designing a product with an artificially limited useful life or a purposely frail design, so tha ...
* Reverse engineering * Science * Structural failure * Sustainable engineering * Technology * Women in engineering


References


Further reading

* * * * * * *


External links

* * * * {{Authority control Engineering occupations Ethics Philosophy of science Main topic articles