HOME

TheInfoList



OR:

{{No footnotes, date=December 2021 Sanukitoids are a variety of high-Mg
granitoid A granitoid is a generic term for a diverse category of coarse-grained igneous rocks that consist predominantly of quartz, plagioclase, and alkali feldspar. Granitoids range from plagioclase-rich tonalites to alkali-rich syenites and from qua ...
found in convergent margin settings. The term "sanukitoid" was originally used to define a variety of
Archean The Archean Eon ( , also spelled Archaean or Archæan) is the second of four geologic eons of Earth's history, representing the time from . The Archean was preceded by the Hadean Eon and followed by the Proterozoic. The Earth during the Archea ...
plutonic Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form '' intrusions'', such as batholiths, dikes, sills, laccoliths, and volcanic necks.Intrusive RocksIntrusive rocks accessdate: March ...
rock, but now also includes younger rocks with similar geochemical characteristics (Shirey & Hanson 1984; Rogers et al. 1985; Stern et al. 1989; Kelemen et al. 2004). They are called "sanukitoid" because of their similarity in bulk chemical composition to high-
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
andesite from the Setouchi Peninsula of Japan, known as "sanukites" or "setouchites" (Tatsumi and Ishizaki 1982). Sanukite rocks are an andesite characterized by
orthopyroxene The pyroxenes (commonly abbreviated to ''Px'') are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula , where X represents calcium (Ca), sodium (Na), iron (Fe ...
as the
mafic A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks incl ...
mineral,
andesine Andesine is a silicate mineral, a member of the plagioclase feldspar solid solution series. Its chemical formula is ( Ca, Na)( Al, Si)4 O8, where Ca/(Ca + Na) (% anorthite) is between 30–50%. The formula may be written as Na0.7-0.5Ca0.3-0.5 ...
as the plagioclase, and a glassy groundmass. Rocks formed by processes similar to those of sanukite may have compositions outside the sanukitoid field. The term was originally defined by Stern et al. (1989) to refer to plutonic rocks containing between 55 and 60 weight percent SiO2, with Mg# >0.6, Ni >100 ppm, Cr >200 ppm, K2O >1 weight percent, Rb/Sr <0.1, Ba >500 ppm, Sr >500 ppm, enrichment in L REEs, and no or minor Eu anomalies. The term "sanukitoid suite" includes more evolved rocks derived from sanukitoid through fractional
crystallization Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely dep ...
. Sanukitoids are similar in trace element compositions to "
adakite Adakites are volcanic rocks of intermediate to felsic composition that have geochemical characteristics of magma originally thought to have formed by partial melting of altered basalt that is subducted below volcanic arcs. Most magmas derived i ...
s" (Defant and Drummond 1990; named for occurrences on the Adak Island in the Aleutian island arc) but with higher Mg and lower silica. Both suites are thought to form by melting of a mafic igneous rock protolith that has been metamorphosed to garnet-pyroxene (eclogite) or garnet-amphibole assemblages (Rapp et al. 1991; Thorkelson & Breitsprecher 2005). The most common source for sanukitoids is probably the mantle, which has been previously metasomatised by silicate melts derived from the melting of a hot, young, subducting slab. When the oceanic crust is subducted and metamorphosed, it is close to its melting point and a slight increase in temperature may cause melting. These melts are initially high in silica at low melt fractions, and decrease in silica as melting proceeds. Melts derived from the eclogite or garnet-amphibole slab are strongly enriched in Sr (no plagioclase in residue) and depleted in HREE and Y (abundant garnet in residue). This melt reacts with the mantle to create the characteristic high Sr, low Y, and high LREE/HREE ratios (Drummond & Defant 1990). Some adakites may form by melting of thick crustal roots of island arcs, but these cannot assimilate mantle wedge components so sanukitoids will not form in this setting. Sanukitoids and adakites are distinct from another variety of high-Mg andesite called
boninite Boninite is an extrusive rock high in both magnesium and silica, thought to be usually formed in fore-arc environments, typically during the early stages of subduction. The rock is named for its occurrence in the Izu-Bonin arc south of Japan. ...
; boninites have major element concentrations similar to sanukitoids, but they are extremely depleted in incompatible trace elements (e.g., LREE) despite their relatively high silica contents. Thus there is no evidence that the mantle wedge that melts to form a sanukitoid has experienced previous extensive melt extraction (Martin et al. 2005). Sanukite has been used as the material for the bars of the ''hōkyō'' (磬石), a
lithophone A lithophone is a musical instrument consisting of a rock or pieces of rock which are struck to produce musical notes. Notes may be sounded in combination (producing harmony) or in succession (melody). It is an idiophone comparable to instrumen ...
invented in Japa


References

* Barager, W.R.A and T.N. Irvine. (1971) "A Guide to the Chemical classification of the Common Volcanic Rocks." Canadian Journal of Earth Sciences, Vol. 8, pp. 523–548. * Defant, M. J. and Drummond, M. S., (1990) "Derivation of some modern arc magmas by melting of young subducted lithosphere." Nature, Vol. 347, pp. 662-665. * Drummond, M. S., and Defant, M. J., 1990, A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons: Journal of Geophysical Research, v. 95, no. B13, p. 21503-21521. * Kelemen, P. B., Yogodzinski, G. M., and Scholl, D. W., 2004, Along-strike Variation in Lavas of the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust, in Eiler, J., ed., Inside the Subduction Factory: Washington DC, American Geophyical Union, Geophysical Monograph Series, Volume 138. * Martin, H., Smithies, R. H., Rapp, R., Moyen, J.-F., and Champion, D., 2005, An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution: Lithos, v. 79, no. 1-2, p. 1-24. * Rapp, R. P., Watson, E. B., and Miller, C. F., 1991, Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites: Precambrian Research, v. 51, no. 1-4, p. 1-25. * Rogers, G., Saunders, A. D., Terrell, D. J., Verma, S. P., and Marriner, G. F., 1985, Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico: Nature, v. 315, no. 6018, p. 389-392. * Shirey, S. B., and Hanson, G. N., 1984, Mantle-derived Archaean monzodiorites and trachyandesites.: Nature, v. 310, no. 5974, p. 222-224. * Stern, R., G.N. Hanson and S.B. Shirey (1989) "Petrogenisis of Mantle derived LILE-enriched Archaean Monzodiorite, Trackyandesites (Sanukitoids) in southern Superior Province." Canadian Journal of Earth Sciences, Vol. 26, pp. 1688–1712. * Tatsumi, Y., and Ishizaka, K., 1982, Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics: Earth and Planetary Science Letters, v. 60, no. 2, p. 293-304. * Thorkelson, D. J., and Breitsprecher, K., 2005, Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas: Lithos, v. 79, no. 1-2, p. 25-41. Igneous petrology