HOME

TheInfoList



OR:

Ridge push (also known as gravitational sliding) or sliding plate force is a proposed driving force for plate motion in
plate tectonics Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large ...
that occurs at
mid-ocean ridges A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diverg ...
as the result of the rigid lithosphere sliding down the hot, raised asthenosphere below mid-ocean ridges. Although it is called ridge push, the term is somewhat misleading; it is actually a
body force In physics, a body force is a force that acts throughout the volume of a body. Springer site - Book 'Solid mechanics'preview paragraph 'Body forces'./ref> Forces due to gravity, electric fields and magnetic fields are examples of body forces. Bo ...
that acts throughout an ocean plate, not just at the ridge, as a result of gravitational pull. The name comes from earlier models of plate tectonics in which ridge push was primarily ascribed to upwelling magma at mid-ocean ridges pushing or wedging the plates apart.


Mechanics

Ridge push is the result of
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
forces acting on the young, raised oceanic lithosphere around
mid-ocean ridges A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diverg ...
, causing it to slide down the similarly raised but weaker asthenosphere and push on lithospheric material farther from the ridges.
Mid-ocean ridges A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diverg ...
are long underwater mountain chains that occur at divergent plate boundaries in the ocean, where new oceanic crust is formed by upwelling mantle material as a result of tectonic plate spreading and relatively shallow (above ~60 km) decompression melting. The upwelling mantle and fresh crust are hotter and less dense than the surrounding crust and mantle, but cool and contract with age until reaching equilibrium with older crust at around 90 Ma. This produces an isostatic response that causes the young regions nearest the plate boundary to rise above older regions and gradually sink with age, producing the mid-ocean ridge morphology. The greater heat at the ridge also weakens rock closer to the surface, raising the
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment * ''Boundaries'' (2016 film), a 2016 Canadian film * ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film *Boundary (cricket), the edge of the pla ...
between the
brittle A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Br ...
lithosphere and the weaker,
ductile Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
asthenosphere to create a similar elevated and sloped feature underneath the ridge. These raised features produce ridge push; gravity pulling down on the lithosphere at the mid-ocean ridge is mostly opposed by the
normal force In mechanics, the normal force F_n is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance '' normal'' is used in the geometric sense and means perpendicular, as oppos ...
from the underlying rock, but the remainder acts to push the lithosphere down the sloping asthenosphere and away from the ridge. Because the asthenosphere is weak, ridge push and other driving forces are enough to deform it and allow the lithosphere to slide over it, opposed by drag at the lithosphere-asthenosphere boundary and resistance to subduction at convergent plate boundaries. Ridge push is mostly active in lithosphere younger than 90 Ma, after which it has cooled enough to reach
thermal equilibrium Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be i ...
with older material and the slope of the lithosphere-asthenosphere boundary becomes effectively zero.


History


Early ideas (1912–1962)

Despite its current status as one of the driving forces of
plate tectonics Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large ...
, ridge push was not included in any of Alfred Wegener's 1912-1930 proposals of
continental drift Continental drift is the hypothesis that the Earth's continents have moved over geologic time relative to each other, thus appearing to have "drifted" across the ocean bed. The idea of continental drift has been subsumed into the science of pl ...
, which were produced before the discovery of
mid-ocean ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diver ...
s and lacked any concrete mechanisms by which the process might have occurred. Even after the development of acoustic depth sounding and the discovery of global mid-ocean ridges in the 1930s, the idea of a spreading force acting at the ridges was not mentioned in scientific literature until Harry Hess's proposal of
seafloor spreading Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener a ...
in 1960, which included a pushing force at mid-ocean ridges as a result of upwelling
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...
wedging the lithosphere apart.


Gravitational models

In 1964 and 1965,
Egon Orowan Egon Orowan FRS ( hu, Orován Egon) (August 2, 1902 – August 3, 1989) was a Hungarian- British physicist and metallurgist. According to György Marx, he was one of The Martians. Life Orowan was born in the Óbuda district of Budapest. ...
proposed the first
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
mechanism for spreading at mid-ocean ridges, postulating that spreading can be derived from the principles of
isostasy Isostasy (Greek ''ísos'' "equal", ''stásis'' "standstill") or isostatic equilibrium is the state of gravitational equilibrium between Earth's crust (or lithosphere) and mantle such that the crust "floats" at an elevation that depends on its ...
. In Orowan's proposal, pressure within and immediately under the elevated ridge is greater than the pressure in the oceanic crust to either side due to the greater weight of overlying rock, forcing material away from the ridge, while the lower density of the ridge material relative to the surrounding crust would gradually compensate for the greater volume of rock down to the depth of isostatic compensation. Similar models were proposed by Lliboutry in 1969, Parsons and Richer in 1980, and others. In 1969, Hales proposed a model in which the raised lithosphere of the mid-ocean ridges slid down the elevated ridge, and in 1970 Jacoby proposed that the less dense material and isostasy of Orowan and others' proposals produced uplift which resulted in sliding similar to Hales' proposal. The term "ridge push force" was coined by Forsyth and Uyeda in 1975.


Significance

Early models of
plate tectonics Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large ...
, such as Harry Hess's
seafloor spreading Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener a ...
model, assumed that the motions of plates and the activity of mid-ocean ridges and subduction zones were primarily the result of
convection currents Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
in the mantle dragging on the crust and supplying fresh, hot
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...
at
mid-ocean ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diver ...
s. Further developments of the theory suggested that some form of ridge push helped supplement convection in order to keep the plates moving, but in the 1990s, calculations indicated that
slab pull Slab pull is a geophysical mechanism whereby the cooling and subsequent densifying of a subducting tectonic plate produces a downward force along the rest of the plate. In 1975 Forsyth and Uyeda used the inverse theory method to show that, of the ...
, the force that a subducted section of plate exerts on the attached crust on the surface, was an order of magnitude stronger than ridge push. As of 1996, slab pull was generally considered the dominant mechanism driving plate tectonics. Modern research, however, indicates that the effects of slab pull are mostly negated by resisting forces in the mantle, limiting it to only 2-3 times the effective strength of ridge push forces in most plates, and that mantle convection is probably much too slow for drag between the lithosphere and the asthenosphere to account for the observed motion of the plates. This restores ridge push as one of the dominant factors in plate motion.


Opposing forces

Ridge push is primarily opposed by plate drag, which is the drag force of the rigid lithosphere moving over the weaker,
ductile Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
asthenosphere. Models estimate that ridge push is probably just sufficient to overcome plate drag and maintain the motion of the plate in most areas. Slab pull is similarly opposed by resistance to the subduction of the lithosphere into the mantle at convergent plate boundaries.


Notable qualifications

Research by Rezene Mahatsente indicates that the driving stresses caused by ridge push would be dissipated by
faulting In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic ...
and
earthquake An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
s in plate material containing large quantities of unbound water, but they conclude that ridge push is still a significant driving force in existing plates because of the rarity of
intraplate earthquake The term intraplate earthquake refers to a variety of earthquake that occurs ''within the interior'' of a tectonic plate; this stands in contrast to an interplate earthquake, which occurs ''at the boundary'' of a tectonic plate. Intraplate eart ...
s in the ocean. In plates with particularly small or young subducting slabs, ridge push may be the predominant driving force in the plate's motion. According to Stefanick and Jurdy, the ridge push force acting on the South American plate is approximately 5 times the slab pull forces acting at its subducting margins because of the small size of the subducting slabs at the
Scotia Scotia is a Latin placename derived from ''Scoti'', a Latin name for the Gaels, first attested in the late 3rd century.Duffy, Seán. ''Medieval Ireland: An Encyclopedia''. Routledge, 2005. p.698 The Romans referred to Ireland as "Scotia" around ...
and Caribbean margins. The Nazca plate also experiences relatively small slab pull, approximately equal to its ridge push, because the plate material is young (no more than 50 million years old) and therefore less dense, with less tendency to sink into the mantle. This also causes the subducting Nazca slab to experience
flat slab subduction Flat slab subduction is characterized by a low subduction angle (<30 degrees to horizontal) beyond the , one of the few places in the world where this currently occurs.


References

{{physical oceanography, expanded=other Geodynamics Tectonics Oceanographical terminology