HOME

TheInfoList



OR:

Reuptake is the reabsorption of a
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neu ...
by a neurotransmitter transporter located along the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
of an
axon terminal Axon terminals (also called synaptic boutons, terminal boutons, or end-feet) are distal terminations of the telodendria (branches) of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell, or neuron, that cond ...
(i.e., the pre-synaptic
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
at a synapse) or
glial cell Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
after it has performed its function of transmitting a neural impulse. Reuptake is necessary for normal synaptic physiology because it allows for the recycling of neurotransmitters and regulates the level of neurotransmitter present in the synapse, thereby controlling how long a signal resulting from neurotransmitter release lasts. Because neurotransmitters are too large and hydrophilic to diffuse through the membrane, specific transport proteins are necessary for the reabsorption of neurotransmitters. Much research, both biochemical and structural, has been performed to obtain clues about the mechanism of reuptake.


Protein structure

The first primary sequence of a reuptake protein was published in 1990. The technique for protein sequence determination relied upon the purification, sequencing, and cloning of the transporter protein in question, or expression cloning strategies in which transport function was used as an assay for cDNA species coding for that transporter. After separation, it was realized that there were many similarities between the two DNA sequences. Further exploration in the field of reuptake proteins found that many of the transporters associated with important neurotransmitters within the body were also very similar in sequence to the GABA and norepinephrine transporters. The members of this new family include transporters for
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80% o ...
,
norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin '' ad ...
,
serotonin Serotonin () or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter. Its biological function is complex and multifaceted, modulating mood, cognition, reward, learning, memory, and numerous physiological processes such as vomiting and va ...
,
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
,
proline Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group but is rather a secondary amine. The secondary amine nitrogen is in the p ...
and GABA. They were called Na+/Cl dependent neurotransmitter transporters.
Sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
and
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride s ...
ion dependence will be discussed later in the mechanism of action. Using the commonalities among sequences and hydropathy plot analyses, it was predicted that there are 12 hydrophobic membrane spanning regions in the 'Classical' transporter family. In addition to this, the N- and C-termini exist in the intracellular space. These proteins also all have an extended extracellular loop between the third and fourth transmembrane sequences. Site-directed chemical labeling experiments verified the predicted topological organization of the serotonin transporter. In addition to neurotransmitter transporters, many other proteins in both animals and prokaryotes were found with similar sequences, indicating a larger family of Neurotransmitter:Sodium Symporters (NSS). One of these proteins, LeuT, from '' Aquifex aeolicus'', was crystallized by Yamashita et al. with very high resolution, revealing a molecule of leucine and two Na+ ions bound near the center of the protein. They found that the transmembrane (TM) helices 1 and 6 contained unwound segments in the middle of the membrane. Along with these two helices, TM helices 3 and 8 and the areas surrounding the unwound sections of 1 and 6 formed the substrate and sodium ion binding sites. The crystal structure revealed pseudo-symmetry in LeuT, in which the structure of TM helices 1-5 is reflected in the structure of helices 6–10. There is an extracellular cavity in the protein, into which protrudes a helical hairpin formed by extracellular loop EL4. In TM1, an
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
distinguishes
monoamine Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromatic ring by a two-carbon chain (such as -CH2-CH2-). Examples are dopamine, norepinephrine and serotonin. All monoamines ar ...
NSS transporters from
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
transporters which contain a
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
at the same position. External and internal "gates" were assigned to pairs of negatively and positively charged residues in the extracellular cavity and near the cytoplasmic ends of TM helices 1 and 8.


Mechanism of action

The classic transporter proteins use transmembrane ion gradients and electrical potential to transport neurotransmitter across the membrane of the presynaptic neuron. Typical neurotransmitter sodium symport (NSS) transporters, which are Na+ and Cl ion dependent, take advantage of both Na+ and Cl gradients, inwardly directed across the membrane. The ions flow down their concentration gradients, in many cases leading to transmembrane charge movement that is enhanced by the membrane potential. These forces pull the neurotransmitter substrate into the cell, even against its own concentration gradient. At a molecular level, Na+ ions stabilize amino acid binding at the substrate site and also hold the transporter in an outward-open conformation that allows substrate binding. The role of the Cl ion in the symport mechanism has been proposed to be for stabilizing the charge of the symported Na+. After ion and substrate binding have taken place, some conformational change must occur. From the conformational differences between the structure of TMs 1-5 and that of TMs 6–10, and from the identification of a substrate permeation pathway between the binding site of SERT and the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, a mechanism for conformational change was proposed in which a four-helix bundle composed of TMs 1, 2, 6 and 7 changes its orientation within the rest of the protein. A structure of LeuT in the inward-open conformation subsequently demonstrated that the major component of the conformational change represents movement of the bundle relative to the rest of the protein.


Mechanism of reuptake inhibition

The main objective of a
reuptake inhibitor Reuptake is the reabsorption of a neurotransmitter by a neurotransmitter transporter located along the plasma membrane of an axon terminal (i.e., the pre-synaptic neuron at a synapse) or glial cell after it has performed its function of transmi ...
is to substantially decrease the rate by which neurotransmitters are reabsorbed into the presynaptic neuron, increasing the concentration of neurotransmitter in the synapse. This increases neurotransmitter binding to pre- and postsynaptic neurotransmitter receptors. Depending on the neuronal system in question, a reuptake inhibitor can have drastic effects on cognition and behavior. Non-competitive inhibition of the bacterial homologue LeuT by tricyclic antidepressants resulted from binding of these inhibitors in the extracellular permeation pathway. However, the competitive nature of serotonin transport inhibition by antidepressants suggests that in neurotransmitter transporters, they bind in a site overlapping the substrate site.


Human systems

Horschitz et al. examined reuptake inhibitor selectivity among the rat serotonin reuptake protein (SERT) expressed in human embryonic kidney cells (HEK-SERT). They presented SERT with varying doses of either
citalopram Citalopram, sold under the brand name Celexa among others, is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class. It is used to treat major depressive disorder, obsessive compulsive disorder, panic disorder, and so ...
(an
SSRI Selective serotonin reuptake inhibitors (SSRIs) are a class of drugs that are typically used as antidepressants in the treatment of major depressive disorder, anxiety disorders, and other psychological conditions. SSRIs increase the extracellul ...
) or desipramine (an inhibitor of norepinephrine reuptake protein, NET). By examining the dose-response curves (using a normal medium as control), they were able to quantify that citalopram acted on SERT as an SSRI, and that desipramine had no effect on SERT. In a separate experiment, Horschitz et al. exposed HEK-SERT with citalopram on a long-term basis. They noticed that long-term exposure led to a down-regulation of binding sites. These results suggest some mechanism for long-term changes in the pre-synaptic neuron after drug therapy. Horschitz et al. found that after removing citalopram from the system, normal levels of SERT binding site expression returned. Depression has been suggested to be a result of a decrease of serotonin found in the synapse, although this hypothesis has been challenged since as early as the 1980s. It was initially supported by the successful reduction of depressive symptoms after administration of
tricyclic antidepressant Tricyclic antidepressants (TCAs) are a class of medications that are used primarily as antidepressants, which is important for the management of depression. They are second-line drugs next to SSRIs. TCAs were discovered in the early 1950s and wer ...
s (such as desipramine) and SSRIs. Tricyclic antidepressants inhibit the reuptake of both serotonin and norepinephrine by acting upon both the SERT and NET. SSRIs selectively inhibit the reuptake of serotonin by acting upon SERT. The net result is an increased amount of serotonin in the synapse, thus increasing the probability that serotonin will interact with a serotonin receptor of the postsynaptic neuron. There are additional mechanisms by which serotonin
autoreceptor An autoreceptor is a type of receptor located in the membranes of nerve cells. It serves as part of a negative feedback loop in signal transduction. It is only sensitive to the neurotransmitters or hormones released by the neuron on which the au ...
desensitization must occur, but the net result is the same. This increases serotonin signaling, which according to the hypothesis is believed to elevate mood and thus relieve depressive symptoms. This proposal for the antidepressant mechanism of serotonin reuptake inhibitors does not account for the time course of the therapeutic effect, which takes weeks to months, while transporter inhibition is essentially immediate. The net effect of
amphetamine Amphetamine (contracted from alpha- methylphenethylamine) is a strong central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. It is also commonly used ...
(AMPH) use is an increase of dopamine, norepinephrine and serotonin in the synapse. It has been shown that AMPH acts upon trace amine-associated receptor 1 (TAAR1) to induce efflux and reuptake inhibition in the serotonin, norepinephrine, and
dopamine transporter The dopamine transporter (also dopamine active transporter, DAT, SLC6A3) is a membrane-spanning protein that pumps the neurotransmitter dopamine out of the synaptic cleft back into cytosol. In the cytosol, other transporters sequester the dop ...
s. This effect requires the transporter and TAAR1 to be co-localized (occur together) within the same neuron.


Neuroprotective role

Astrocytes Astrocytes (from Ancient Greek , , "star" + , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of ...
seem to utilize reuptake mechanisms for a neuroprotective role. Astrocytes use excitatory amino acid transporter 2 (EAAT2, aka GLT-1) to remove
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synt ...
from the synapse. EAAT2
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
were more prone to lethal and spontaneous seizures and acute brain injuries among the cortex. These effects could be linked to increased concentrations of glutamate in the brains of EAAT2 knockout mice, analyzed post-mortem.


References

{{reflist, 33em Neurotransmitters Neurotransmitter transporters