HOME

TheInfoList



OR:

Renewable heat is an application of
renewable energy Renewable energy is energy that is collected from renewable resources that are naturally replenished on a human timescale. It includes sources such as sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy ...
referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented. Many colder countries consume more energy for heating than for supplying electricity. For example, in 2005 the United Kingdom consumed 354 TWh of electric power, but had a heat requirement of 907 TWh, the majority of which (81%) was met using gas. The residential sector alone consumed 550 TWh of energy for heating, mainly derived from methane. Almost half of the final energy consumed in the UK (49%) was in the form of heat, of which 70% was used by households and in commercial and public buildings. Households used heat mainly for space heating (69%). The relative competitiveness of renewable electricity and renewable heat depends on a nation's approach to energy and environment policy. In some countries renewable heat is hindered by subsidies for fossil fuelled heat. In those countries, such as Sweden, Denmark and Finland, where
government intervention Economic interventionism, sometimes also called state interventionism, is an economic policy position favouring government intervention in the market process with the intention of correcting market failures and promoting the general welfare of ...
has been closest to a technology-neutral form of carbon valuation (i.e. carbon and energy taxes), renewable heat has played the leading role in a very substantial renewable contribution to final energy consumption. In those countries, such as Germany, Spain, the US, and the UK, where government intervention has been set at different levels for different technologies, uses and scales, the contributions of renewable heat and renewable electricity technologies have depended on the relative levels of support, and have resulted generally in a lower renewable contribution to final energy consumption.


Leading renewable heat technologies


Solar heating

Solar heating A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and sola ...
is a style of building construction which uses the energy of summer or winter sunshine to provide an economic supply of primary or supplementary heat to a structure. The heat can be used for both space heating (see solar air heat) and
water heating Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated t ...
(see
solar hot water Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential an ...
). Solar heating design is divided into two groups: *
Passive solar In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unli ...
heating relies on the design and structure of the house to collect heat.
Passive solar building design In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unli ...
must also consider the storage and distribution of heat, which may be accomplished passively, or use air ducting to draw heat actively to the foundation of the building for storage. One such design was measured lifting the temperature of a house to on a partially sunny winter day (-7 °C or 19 °F), and it is claimed that the system provides passively for the bulk of the building's heating. The home cost $125 per square foot (or 370 m2 at $1,351/m2), similar to the cost of a traditional new home. * Active solar heating uses
pump A pump is a device that moves fluids (liquids or gases), or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy. Pumps can be classified into three major groups according to the method they ...
s to move air or a liquid from the solar collector into the building or storage area. Applications such as solar air heating and
solar water heating Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential ...
typically capture solar heat in panels which can then be used for applications such as space heating and supplementation of residential water heaters. In contrast to
photovoltaic panels Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially us ...
, which are used to generate electricity, solar heating panels are less expensive and capture a much higher proportion of the sun's energy. Solar heating systems usually require a small supplementary backup heating system, either conventional or renewable.


Geothermal heating

Geothermal energy Geothermal energy is the thermal energy in the Earth's crust which originates from the formation of the planet and from radioactive decay of materials in currently uncertain but possibly roughly equal proportions. The high temperature and pr ...
is accessed by drilling water or steam wells in a process similar to drilling for oil. Geothermal energy is an enormous, underused heat and power resource that is clean (emits little or no greenhouse gases), reliable (average system availability of 95%), and homegrown (making populations less dependent on oil). The earth absorbs the sun's energy and stores it as heat in the oceans and underground. The ground temperature remains constant at a point of all year round depending on where you live on earth. A geothermal heating system takes advantage of the consistent temperature found below the Earth's surface and uses it to heat and cool buildings. The system is made up of a series of pipes installed underground, connected to pipes in a building. A pump circulates liquid through the circuit. In the winter the fluid in the pipe absorbs the heat of the earth and uses it to heat the building. In the summer the fluid absorbs heat from the building and disposes of it in the earth.


Heat pumps

Heat pump A heat pump is a device that can heat a building (or part of a building) by transferring thermal energy from the outside using a refrigeration cycle. Many heat pumps can also operate in the opposite direction, cooling the building by removing ...
s use work to move heat from one place to another, and can be used for both heating and air conditioning. Though capital intensive, heat pumps are economical to run and can be powered by renewable electricity. Two common types of heat pump are
air source heat pump An air source heat pump (ASHP) is a type of heat pump that can absorb heat from outside a structure and release it inside using the same vapor-compression refrigeration process and much the same equipment as air conditioners but used in the oppo ...
s (ASHP) and ground-source heat pumps (GSHP), depending on whether heat is transferred from the air or from the ground. Air source heat pumps are not effective when the outside air temperature is lower than about -15 °C, while ground-source heat pumps are not affected. The efficiency of a heat pump is measured by the
coefficient of performance The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. Higher COPs equate to higher efficiency, lower energy ( ...
(CoP): For every unit of electricity used to pump the heat, an air source heat pump generates 2.5 to 3 units of heat (i.e. it has a CoP of 2.5 to 3), whereas a GSHP generates 3 to 3.5 units of heat. Based on current fuel prices for the United Kingdom, assuming a CoP of 3–4, a GSHP is sometimes a cheaper form of space heating than electric, oil, and solid fuel heating. Heat pumps can be linked to an inter
seasonal thermal energy storage Seasonal thermal energy storage (STES), also known as inter-seasonal thermal energy storage, is the storage of heat or cold for periods of up to several months. The thermal energy can be collected whenever it is available and be used whenever nee ...
(hot or cold), doubling the CoP from 4 to 8 by extracting heat from warmer ground.


Interseasonal heat transfer

A heat pump with Interseasonal Heat Transfer combines active solar collection to store surplus summer heat in thermal banks with ground-source heat pumps to extract it for space heating in winter. This reduces the "Lift" needed and doubles the CoP of the heat pump because the pump starts with warmth from the thermal bank in place of cold from the ground.


CoP and lift

A heat pump CoP increases as the temperature difference, or "Lift", decreases between heat source and destination. The CoP can be maximized at design time by choosing a heating system requiring only a low final water temperature (e.g., underfloor heating), and by choosing a heat source with a high average temperature (e.g., the ground). Domestic hot water (DHW) and conventional radiators require high water temperatures, affecting the choice of heat pump technology. Low temperature radiators provide an alternative to conventional radiators.


Resistive electrical heating

Renewable electricity can be generated by hydropower, solar, wind, geothermal and by burning biomass. In a few countries where renewable electricity is inexpensive, resistance heating is common. In countries like Denmark where electricity is expensive, it is not permitted to install electric heating as the main heat source. Wind turbines have more output at night when there is a small demand for electricity, storage heaters consume this lower cost electricity at night and give off heat during the day.


Wood-pellet heating

Wood-pellet heating and other types of wood heating systems have achieved their greatest success in heating premises that are off the gas grid, typically being previously heated using heating oil or coal. Solid wood fuel requires a large amount of dedicated storage space, and the specialized heating systems can be expensive (though grant schemes are available in many European countries to offset this capital cost.) Low fuel costs mean that wood fuelled heating in Europe is frequently able to achieve a payback period of less than 3 to 5 years. Because of the large fuel storage requirement wood fuel can be less attractive in urban residential scenarios, or for premises connected to the gas grid (though rising gas prices and uncertainty of supply mean that wood fuel is becoming more competitive.) There is also growing concern over the air pollution from wood heating versus oil or gas heat, especially the fine particulates.


Wood-stove heating

Burning
wood fuel Wood fuel (or fuelwood) is a fuel such as firewood, charcoal, Woodchips, chips, sheets, wood pellets, pellets, and sawdust. The particular form used depends upon factors such as source, quantity, quality and application. In many areas, wood is ...
in an open fire is both extremely inefficient (0-20%) and polluting due to low temperature partial combustion. In the same way that a drafty building loses heat through loss of warm air through poor sealing, an open fire is responsible for large heat losses by drawing very large volumes of warm air out of the building. Modern wood
stove A stove or range is a device that burns fuel or uses electricity to generate heat inside or on top of the apparatus, to be used for general warming or cooking. It has evolved highly over time, with cast-iron and induction versions being develope ...
designs allow for more efficient combustion and then heat extraction. In the United States, new wood stoves are certified by the
U.S. Environmental Protection Agency The Environmental Protection Agency (EPA) is an Independent agencies of the United States government, independent executive agency of the United States federal government tasked with environmental protection matters. President Richard Nixon pro ...
(EPA) and burn cleaner and more efficiently (the overall efficiency is 60-80%) and draw smaller volumes of warm air from the building. "Cleaner" should not, however, be confused with clean. An Australian study of real-life emissions from woodheaters satisfying the current Australian standard, found that particle emissions averaged 9.4 g/kg wood burned (range 2.6 to 21.7). A heater with average wood consumption of 4 tonnes per year therefore emits 37.6 kg of PM2.5, i.e. particles less than 2.5
micrometers The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
. This can be compared with a passenger car satisfying the current Euro 5 standards (introduced September 2009) of 0.005 g/km. So one new wood heater emits as much PM2.5 per year as 367 passenger cars each driving 20,000 km a year. A recent European study identified PM2.5 as the most health-hazardous air pollutant, causing an estimated 492,000 premature deaths. The next worst pollutant, ozone, is responsible for 21,000 premature deaths. Because of the problems with pollution, the Australian Lung Foundation recommends using alternative means for climate control. The American Lung Association "strongly recommends using cleaner, less toxic sources of heat. Converting a wood-burning fireplace or stove to use either natural gas or propane will eliminate exposure to the dangerous toxins wood burning generates including dioxin, arsenic and formaldehyde. "Renewable" should not be confused with "greenhouse neutral". A recent peer-reviewed paper found that, even if burning firewood from a sustainable supply,
methane emissions Increasing methane emissions are a major contributor to the rising concentration of greenhouse gases in Earth's atmosphere, and are responsible for up to one-third of near-term global heating. During 2019, about 60% (360 million tons) of methane r ...
from a typical Australian wood heater satisfying the current standard cause more global warming than heating the same house with gas. However, because a large proportion of firewood sold in Australia is not from sustainable supplies, Australian households that use wood heating often cause more global warming than heating three similar homes with gas. High efficiency stoves should meet the following design criteria: * Well sealed and precisely calibrated to draw a low yet sufficient volume of air. Air-flow restriction is critical; a lower inflow of cold air cools the furnace less (a higher temperature is thus achieved). It also allows greater time for extraction of heat from the
exhaust gas Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an ...
, and draws less heat from the building. * The furnace must be well insulated to increase combustion temperature, and thus completeness. * A well insulated furnace radiates little heat. Thus heat must be extracted instead from the exhaust gas duct. Heat absorption efficiencies are higher when the heat-exchange duct is longer, and when the flow of exhaust gas is slower. * In many designs, the heat-exchange duct is built of a very large mass of heat-absorbing brick or stone. This design causes the absorbed heat to be emitted over a longer period - typically a day.


Renewable natural gas

Renewable natural gas Renewable natural gas (RNG), also known as sustainable natural gas (SNG) or biomethane, is a biogas which has been upgraded to a quality similar to fossil natural gas and having a methane concentration of 90% or greater. By increasing the concentr ...
is defined as gas obtained from
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bio ...
which is upgraded to a quality similar to
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
. By upgrading the quality to that of natural gas, it becomes possible to distribute the gas to customers via the existing gas grid. According to the Energy research Centre of the Netherlands, renewable natural gas is 'cheaper than alternatives where biomass is used in a combined heat and power plant or local combustion plant'. Energy unit costs are lowered through 'favourable scale and operating hours', and end-user capital costs eliminated through distribution via the existing gas grid.


Energy efficiency

Renewable heat goes hand in hand with energy efficiency. Indeed, renewable heating projects depend heavily for their success on energy efficiency; in the case of solar heating to cut reliance on the requirement supplementary heating, in the case of wood fuel heating to cut the cost of wood purchased and volume stored, and in the case of heat pumps to reduce the size and investment in heat pump, heat sink and electricity costs. Two main types of improvement can be made to a building's energy efficiency:


Insulation

Improvements to insulation can cut energy consumption greatly, making a space cheaper to heat and to cool. However existing housing can often be difficult or expensive to improve. Newer buildings can benefit from many of the techniques of
superinsulation Superinsulation is an approach to building design, construction, and retrofitting that dramatically reduces heat loss (and gain) by using much higher levels of insulation and airtightness than normal. Superinsulation is one of the ancestors of t ...
. Older buildings can benefit from several kinds of improvement: * Solid wall insulation: A building with solid walls can benefit from internal or external insulation. External wall insulation involves adding decorative weather-proof insulating panels or other treatment to the outside of the wall. Alternatively, internal wall insulation can be applied using ready-made insulation/plaster board laminates, or other methods. Thicknesses of internal or external insulation typically range between 50 and 100 mm. * Cavity wall insulation: A building with cavity walls can benefit from insulation pumped into the cavity. This form of insulation is very cost effective. *
Programmable thermostat A programmable thermostat is a thermostat which is designed to adjust the temperature according to a series of programmed settings that take effect at different times of the day. Programmable thermostats are also known as setback thermostats o ...
s allow heating and cooling of a room to be switched off depending the time, day of the week, and temperature. A bedroom, for example, does not need to be heated during the day, but a living room does not need to be heated during the night. * Roof insulation * Insulated windows and doors * Draught proofing


Underfloor heating

Underfloor heating may sometimes be more energy efficient than traditional methods of heating: * Water circulates within the system at low temperatures (35 °C - 50 °C) making gas boilers, wood fired boilers, and heat pumps significantly more efficient. * Rooms with underfloor heating are cooler near the ceiling, where heat is not required, but warmer underfoot, where comfort is most required. * Traditional radiators are frequently positioned underneath poorly insulated windows, heating them unnecessarily.


Waste-water heat recovery

It is possible to recover significant amounts of heat from waste hot water via hot water heat recycling. Major consumption of hot water is sinks, showers, baths, dishwashers, and clothes washers. On average 30% of a property's domestic hot water is used for showering.http://www.nrel.gov/docs/fy10osti/47685.pdf pg5 Incoming fresh water is typically of a far lower temperature than the waste water from a shower. An inexpensive heat exchanger recovers up on average 40% of the heat that would normally be wasted, by warming incoming cold fresh water with heat from outgoing waste water.


Heat recovery ventilation

Heat recovery ventilation Heat recovery ventilation (HRV), also known as mechanical ventilation heat recovery (MVHR), is an energy recovery ventilation system which works between two air sources at different temperatures. Heat recovery is a method which is used to reduce ...
(HRV) is an energy recovery ventilation system which works between two air sources at different temperatures. By recovering the residual heat in the exhaust gas, the fresh air introduced into the air conditioning system is preheated.


See also

* Air source heat pumps *
Autonomous building An autonomous building is a building designed to be operated independently from infrastructural support services such as the electric power grid, gas grid, municipal water systems, sewage treatment systems, storm drains, communication services, ...
*
Architectural engineering Architectural engineers apply and theoretical knowledge to the engineering design of buildings and building systems. The goal is to engineer high performance buildings that are sustainable, economically viable and ensure the safety health. Archi ...
*
Biogas Biogas is a mixture of gases, primarily consisting of methane, carbon dioxide and hydrogen sulphide, produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste and food waste. It is a ...
*
Energy conservation Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively (using less energy for continuous service) or changing one's behavior to use less service (f ...
* Ground source heat pump *
Green architecture Sustainable architecture is architecture that seeks to minimize the negative environmental impact of buildings through improved efficiency and moderation in the use of materials, energy, development space and the ecosystem at large. Sustainable ...
*
Green building Green building (also known as green construction or sustainable building) refers to both a structure and the application of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from planni ...
* Hot water heat recycling *
Heat recovery ventilation Heat recovery ventilation (HRV), also known as mechanical ventilation heat recovery (MVHR), is an energy recovery ventilation system which works between two air sources at different temperatures. Heat recovery is a method which is used to reduce ...
*
Superinsulation Superinsulation is an approach to building design, construction, and retrofitting that dramatically reduces heat loss (and gain) by using much higher levels of insulation and airtightness than normal. Superinsulation is one of the ancestors of t ...
*
Sustainability Specific definitions of sustainability are difficult to agree on and have varied in the literature and over time. The concept of sustainability can be used to guide decisions at the global, national, and individual levels (e.g. sustainable livi ...
*
Sustainable design Environmentally sustainable design (also called environmentally conscious design, eco-design, etc.) is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability ...
*
Mitigation of global warming Climate change mitigation is action to limit climate change by reducing emissions of greenhouse gases or removing those gases from the atmosphere. The recent rise in global average temperature is mostly caused by emissions from fossil fuels bur ...
*
Natural building A natural building involves a range of building systems and materials that place major emphasis on sustainability. Ways of achieving sustainability through natural building focus on durability and the use of minimally processed, plentiful or renew ...
*
Passive house "Passive house" (german: Passivhaus) is a voluntary standard for energy efficiency in a building, which reduces the building's ecological footprint. It results in ultra-low energy buildings that require little energy for space heating or coo ...
*
Passive solar In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unli ...
*
Renewable energy Renewable energy is energy that is collected from renewable resources that are naturally replenished on a human timescale. It includes sources such as sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy ...
*
Renewable energy development Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include ...
* Solar Air Heat * Solar combisystem *
Solar hot water Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential an ...
*
Solar power Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Photovoltaic cells convert light into an electric current using the photovolta ...
*
European Biomass Association Bioenergy Europe (formerly known as AEBIOM) is a European trade association open to national biomass associations and bioenergy companies active in Europe. It was founded in 1990 under the leadership of French senator Michel Souplet with the a ...
*
Thermal insulation Thermal insulation is the reduction of heat transfer (i.e., the transfer of thermal energy between objects of differing temperature) between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with ...
* Underfloor heating * Wood briquettes *
Zero energy building A Zero Energy Building (ZEB), also known as a Net Zero Energy (NZE) building, is a building with net zero energy consumption, meaning the total amount of energy used by the building on an annual basis is equal to the amount of renewable energy c ...


References


External links

* Heat pumps based on R744 (CO2
FAQ

Heat pumps Long Awaited Way out of the Global Warming
- Information from Heat Pump & Thermal Storage Technology Center of Japan * Department of Trade and Industry, 2005 study o
Renewable Heat


combining asphalt solar collectors, thermal banks and ground source heat pumps. * Energy Saving Trust information o
Home Insulation


- download
Solid wall insulation

Cavity wall insulation
{{HVAC Energy economics Energy conservation Heating Low-energy building Residential heating Renewable energy technology Sustainable technologies Sustainable building Sustainable architecture Sustainable energy